Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2023 | Story The Conversation | Photo supplied
Claudia Ntsapi
Dr Claudia Ntsapi, Basic Medical Sciences Lecturer at the University of the Free State.

Opinion article by , Basic Medical Sciences Lecturer


As the world population has grown older, Alzheimer’s disease has become increasingly common. Alzheimer’s disease is the most prevalent form of dementia. Dementia is a term used to describe a range of symptoms linked to the decline in brain function with age. Symptoms include memory loss, communication difficulties, problem-solving struggles, and personality or behavioural changes.

Alzheimer’s disease is an increasingly urgent global issue. The World Health Organization predicts that the number of people with the condition will triple by 2050.

Despite this growing problem, Alzheimer’s disease remains a relatively understudied condition. This is particularly the case in sub-Saharan countries such as South Africa. One major challenge is that Alzheimer’s is a complex condition with no known cure. However, researchers have identified several key risk factors associated with the disease. These include age, genetics, lifestyle factors and underlying medical conditions.

In recent years, one of the most promising areas of research on age-related diseases, such as Alzheimer’s disease, has been the accumulation of harmful proteins in the brain. Specifically amyloid-ß. Amyloid-ß has remained a prominent area of research in Alzheimer’s disease as its build-up is a classic feature in the development of the condition. Understanding its involvement in the disease process is crucial for advancing our knowledge and developing effective strategies to diagnose, prevent and treat the disease.

The accumulation of amyloid-ß can lead to the formation of plaques. These plaques can interfere with communication between brain cells. This ultimately contributes to cognitive decline and other symptoms associated with Alzheimer’s disease.

Amyloid-ß is a large membrane protein that is essential in neural growth and repair. But its corrupted form in later life can destroy nerve cells. This triggers the loss of thought and memory that is associated with Alzheimer’s.

We therefore sought to find out if dietary interventions, particularly intermittent fasting, would counteract the accumulation of amyloid-ß in the brain and potentially safeguard against age-related brain cell death.

In a paper published in 2021, my colleague and I showed that in experiments conducted in mice we found that intermittent fasting counteracted amyloid-ß accumulation in the brain. These findings were further confirmed in a paper published in May of 2022.

Our findings are an important contribution to the search for the potential role of dietary interventions and are consistent with previous studies supporting the idea that intermittent fasting may help counteract amyloid-ß accumulation in the brain and protect against age-related brain cell death. To my knowledge, the most recent study using a variation of intermittent fasting, was published in September 2022. The clinical branch of this study remains ongoing.

Research into the causes of Alzheimer’s has gathered pace in recent years with new ground being broken on a regular basis as scientists search for treatments.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy – the process that breaks down and recycles damaged or unnecessary cellular components, such as organelles and toxic proteins. This process can therefore reduce the risk of amyloid-ß build-up and associated brain cell death.

These findings are particularly significant because they shed light on the relationship between autophagy and the death of brain cells with age, and the potential therapeutic benefits of interventions that target this process.

How it works

Intermittent fasting is a dietary approach that involves regulating food intake by alternating periods of fasting and eating. This dietary regimen comprises periods of restricted food consumption, followed by periods of normal eating.

There are different types of intermittent fasting. One is time-restricted eating, where food is consumed within a specific time window each day. Alternate-day fasting is where food is restricted every other day.

Intermittent fasting has been shown to have various health benefits. Some of the benefits relate to the promotion of brain health.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy, an essential process for removing toxic or misfolded proteins that can build up in cells.

Sometimes autophagy doesn’t work properly to remove harmful proteins or other cellular components from cells. This has been strongly implicated in the development and progression of various age-related diseases, and is a target of research for potential therapies.

What we did

In our study we investigated the effects of intermittent fasting on brain cells in mice, and brain cells isolated from mice with increased amyloid-ß toxicity. Mice cells are frequently used as a model for human cells in scientific research. This is because of the significant genetic similarity between mice and humans. This use of animal models allows researchers to gain valuable insights and test hypotheses. It is generally considered ethically preferable before potentially conducting human studies.

We found that 24 to 48 hours of intermittent fasting by mice provided protection against cell death in specific regions of their brain. We noted increased autophagy levels in cells of fasted mice. Even in the presence of a high amyloid-ß protein load in brain cells, intermittent fasting maintained autophagy activity. And the process remained effective over a 21-day treatment intervention period.

By increasing the efficiency of autophagy, it is possible to maintain the removal of harmful proteins in cells, even as we age.

The findings of this study suggest that interventions such as intermittent fasting could potentially protect against the development of age-related diseases. This has important implications for public health.

Intermittent fasting is a relatively simple dietary intervention: it’s easy to do. It has the potential to be widely adopted as a preventive measure against the onset of age-related diseases. These findings also provide a basis for future research into the mechanisms by which intermittent fasting protects against brain cell death, exploring the potential for additional therapeutic interventions that target autophagy, and examining the effects of different fasting regimens on brain health.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

News Archive

Getting out of the dark
2015-04-28

Photo: Leonie Bolleurs

Since 2008, the University of the Free State has been busy with the planning and implementation of projects to reduce the impact of load shedding. To date,  the cost of these projects has run to R6 million. They have been done primarily to ensure that the academic programme does not suffer damage as a result of the increasing interruptions in the power supply that are continuing this year.

The university’s greatest concern has been the provision of emergency power to the lecture halls and laboratories.

Thus far, 35 generators are servicing 55 buildings on the three campuses of the UFS. This includes 26 generators on the Bloemfontein Campus, eight on the Qwaqwa Campus in the Eastern Free State, and one generator on the South Campus in Bloemfontein. The generators are already in service, and are maintained in working order.

Since 2010, the university has also ensured that all newly-built academic buildings are equipped with emergency power supplies.

On the South Campus in Bloemfontein, the new lecture-hall building and the computer laboratory are equipped with emergency power, while the installation of emergency generators in other buildings is under way. The majority of the buildings on the Qwaqwa Campus in the Eastern Free State are equipped with emergency power supplies.

In the meantime, the UFS management has approved a further R11 million for the installation of additional generators on the three campuses. A further R1.5 million has also been approved for the purchase of two mobile generators.

To extend the work already done, the main task will be the installation of more generators on the Bloemfontein Campus to ensure that lecture halls with emergency power will be available for the centrally-arranged timetables, and to ensure that more of the critical laboratories will be provided with emergency power.

There are still  some important buildings and halls on the Bloemfontein Campus that must be supplied with emergency power. However, it is a costly process and must be brought into operation gradually. The further implementation of emergency power depends on the delivery of equipment. The university is also investigating alternative solutions for power provisioning, including solar power.

Generators with spare capacity are optimally deployed to satisfy the lower needs of the campus, including the Odeion, the ANNEX at Microbiology, the Stabilis ANNEX, the Agriculture Building, the UV-Sasol library, and the Francois Retief Building.

In addition, the UFS  is busy on all campuses, coupling area lighting, including

street lights and pedestrian walkways, to existing generators. Procedures for the operation of mechanical equipment, such as entrance gates, lifts, and so on, are currently being dealt with on all campuses. Continuous power sources for certain ICT equipment will be installed on all campuses to protect it against power surges.

Staff and students can also equip themselves with the necessary knowledge to manage load shedding in their specific areas of work and study. It is always helpful to know who to contact. The following list with guidelines and contact numbers has been compiled to assist you:

1. In an emergency, call Protection Services. This line will continue to operate, regardless of whether the power is on or off.
2. Avoid using lifts just before planned load shedding. Some lifts have emergency power packs which will bring the lift to the nearest floor and open the doors. If you still get stuck in a lift during a power outage, use your cellphone to call Protection Services. While you're waiting, stay calm and be patient.
3. If the access control systems in your building stop working after load shedding, contact Protection Services.
4. The students and staff members who are most at risk during load shedding are those in wheelchairs or with other mobility limitations. As far as possible, plan ahead to avoid being stuck on a floor or in a room that is difficult to access when load shedding is imminent. Please contact Protection Services if you need assistance.
5. During a fire, alarms WILL go off. Alarms are not power driven, but battery driven. For assistance, contact Protection Services.
6. The main UFS Switchboard (Bloemfontein Campus +27(0)51 401 9111 and Qwaqwa Campus +27(0)58 718 5000) will continue to operate during load shedding.

Contact details of Protection Services:

  • Bloemfontein Campus: +27(0)51 401 2634/2911
  • Qwaqwa Campus: +27(0)58 508 5460/5175
  • South Campus: +27(0)51 5051217

Communication and Brand Management will make information available on the UFS web, Facebook page, Twitter, Blackboard and the intranet. Get the load shedding schedule from Eskom’s webpage (http://loadshedding.eskom.co.za/). The Bloemfontein Campus falls in group 4 and the South Campus falls in group 2 in Centlec’s load shedding schedule.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept