Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2023 | Story The Conversation | Photo supplied
Claudia Ntsapi
Dr Claudia Ntsapi, Basic Medical Sciences Lecturer at the University of the Free State.

Opinion article by , Basic Medical Sciences Lecturer


As the world population has grown older, Alzheimer’s disease has become increasingly common. Alzheimer’s disease is the most prevalent form of dementia. Dementia is a term used to describe a range of symptoms linked to the decline in brain function with age. Symptoms include memory loss, communication difficulties, problem-solving struggles, and personality or behavioural changes.

Alzheimer’s disease is an increasingly urgent global issue. The World Health Organization predicts that the number of people with the condition will triple by 2050.

Despite this growing problem, Alzheimer’s disease remains a relatively understudied condition. This is particularly the case in sub-Saharan countries such as South Africa. One major challenge is that Alzheimer’s is a complex condition with no known cure. However, researchers have identified several key risk factors associated with the disease. These include age, genetics, lifestyle factors and underlying medical conditions.

In recent years, one of the most promising areas of research on age-related diseases, such as Alzheimer’s disease, has been the accumulation of harmful proteins in the brain. Specifically amyloid-ß. Amyloid-ß has remained a prominent area of research in Alzheimer’s disease as its build-up is a classic feature in the development of the condition. Understanding its involvement in the disease process is crucial for advancing our knowledge and developing effective strategies to diagnose, prevent and treat the disease.

The accumulation of amyloid-ß can lead to the formation of plaques. These plaques can interfere with communication between brain cells. This ultimately contributes to cognitive decline and other symptoms associated with Alzheimer’s disease.

Amyloid-ß is a large membrane protein that is essential in neural growth and repair. But its corrupted form in later life can destroy nerve cells. This triggers the loss of thought and memory that is associated with Alzheimer’s.

We therefore sought to find out if dietary interventions, particularly intermittent fasting, would counteract the accumulation of amyloid-ß in the brain and potentially safeguard against age-related brain cell death.

In a paper published in 2021, my colleague and I showed that in experiments conducted in mice we found that intermittent fasting counteracted amyloid-ß accumulation in the brain. These findings were further confirmed in a paper published in May of 2022.

Our findings are an important contribution to the search for the potential role of dietary interventions and are consistent with previous studies supporting the idea that intermittent fasting may help counteract amyloid-ß accumulation in the brain and protect against age-related brain cell death. To my knowledge, the most recent study using a variation of intermittent fasting, was published in September 2022. The clinical branch of this study remains ongoing.

Research into the causes of Alzheimer’s has gathered pace in recent years with new ground being broken on a regular basis as scientists search for treatments.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy – the process that breaks down and recycles damaged or unnecessary cellular components, such as organelles and toxic proteins. This process can therefore reduce the risk of amyloid-ß build-up and associated brain cell death.

These findings are particularly significant because they shed light on the relationship between autophagy and the death of brain cells with age, and the potential therapeutic benefits of interventions that target this process.

How it works

Intermittent fasting is a dietary approach that involves regulating food intake by alternating periods of fasting and eating. This dietary regimen comprises periods of restricted food consumption, followed by periods of normal eating.

There are different types of intermittent fasting. One is time-restricted eating, where food is consumed within a specific time window each day. Alternate-day fasting is where food is restricted every other day.

Intermittent fasting has been shown to have various health benefits. Some of the benefits relate to the promotion of brain health.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy, an essential process for removing toxic or misfolded proteins that can build up in cells.

Sometimes autophagy doesn’t work properly to remove harmful proteins or other cellular components from cells. This has been strongly implicated in the development and progression of various age-related diseases, and is a target of research for potential therapies.

What we did

In our study we investigated the effects of intermittent fasting on brain cells in mice, and brain cells isolated from mice with increased amyloid-ß toxicity. Mice cells are frequently used as a model for human cells in scientific research. This is because of the significant genetic similarity between mice and humans. This use of animal models allows researchers to gain valuable insights and test hypotheses. It is generally considered ethically preferable before potentially conducting human studies.

We found that 24 to 48 hours of intermittent fasting by mice provided protection against cell death in specific regions of their brain. We noted increased autophagy levels in cells of fasted mice. Even in the presence of a high amyloid-ß protein load in brain cells, intermittent fasting maintained autophagy activity. And the process remained effective over a 21-day treatment intervention period.

By increasing the efficiency of autophagy, it is possible to maintain the removal of harmful proteins in cells, even as we age.

The findings of this study suggest that interventions such as intermittent fasting could potentially protect against the development of age-related diseases. This has important implications for public health.

Intermittent fasting is a relatively simple dietary intervention: it’s easy to do. It has the potential to be widely adopted as a preventive measure against the onset of age-related diseases. These findings also provide a basis for future research into the mechanisms by which intermittent fasting protects against brain cell death, exploring the potential for additional therapeutic interventions that target autophagy, and examining the effects of different fasting regimens on brain health.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

News Archive

Power shortage: Measures to be implemented immediately
2008-01-31

1. In order to avoid the further implementation of power sharing, electricity companies countrywide are requiring, in addition to measures announced for domestic consumers, that major power consumers save a certain percentage of power.

2. Die UFS is one of the 100 largest clients of Centlec, the local electricity distribution company. During a meeting last Thursday evening with the 100 largest clients, it was indicated that the UFS had to deliver a saving of 10%. The details are as follows:

  • Provision is made to a certain extent for an increase in electricity consumption. The calculation is done as follows: maximum consumption for 2007+6%-10%.
  • This entails a saving during peak times, as well as a saving regarding the total number of units consumed.
  • The saving is calculated on a monthly basis.
  • Saving measures must be implemented immediately (from 7 March). If electricity-saving goals are not attained, power sharing will be resumed from 10 March.

3. The UFS has been controlling its peak demand by means of an energy control system for many years. The geysers of residences and certain central air-conditioning systems were linked to the control system in order to shift energy consumption to non-peak times.

4. In order to attain the goal of 10%, it is necessary to implement further energy control systems and additional measures – which requires time and money. Attention will have to be given, inter alia, to the following:

  • The 1000+ portable air-conditioning units on the campus (huge power guzzlers) must be connected to energy control appliances and systems.
  • All the filament bulbs must be replaced.

7. The UFS will be conducting high-level talks with Centlec later this week with a view to:

  • conveying the unique needs of the UFS in detail;
  • stating the impact of building and refurbishing projects that are currently in the implementation and planning phases;
  • requesting understanding for the fact that the UFS does not have the capacity to immediately deliver the 10% saving.
     

It is evident from discussions thus far that Centlec is sympathetic and wants to help, but also that immediate action and co-operation are expected from the UFS. During the meeting, the UFS must also report back on steps already taken (since 7 March) in this regard.

8. The installation of the emergency power units for the large lecture-hall complexes and a few other critical areas, which has already been approved, is continuing. About R3m is being spent on this. Additional emergency power needs reported to Physical Resources via line managers are currently being investigated with a view to obtaining a cost estimate and subsequently determining priorities in consultation with line managers.

It is recommended that:

a) All line managers, staff members and students be requested to give their full co-operation with regard to saving electricity in every possible way, and that current operational arrangements be amended if possible with a view to promoting power saving. 

Staff, students and other users of campus facilities be requested to see to it that lights and air conditioning (individual units) in unused areas are switched off.

b) The following measures drawn up in co-operation with electrical engineers come into effect immediately:

Arrangements to be made by Physical Resources staff:
(Additional capacity to be able to complete everything within a reasonable period of time will have to be found and funded. This aspect will be taken up with the line managers concerned):

  • The geysers of all office buildings will be switched off at the distribution board. Staff are requested to use a kettle for washing dishes, and are warned not to switch appliances on again themselves.
  • In all office buildings where 12V and 15W downlighters and uplighters remain switched on for decorative purposes and do not serve as primary illumination, the light switches will be disconnected.
  • Lighting in cloakrooms will be checked, and illumination levels will be reduced if possible.
  • All light armatures must be replaced by CFL types.
  • All lights on the grounds will be checked to ensure minimum power consumption.
  • The upper limit of all central cooling systems currently regulated via the energy control system must be set to 24 degrees.

Arrangements to be made by Kovsie Sport:

  • Sport activities requiring sports field illumination must be scheduled after 20:00 in the evening (the lights may not be on between 18:00 and 20:00.)
  • Sports field illumination must be managed so that such lights are not switched on unnecessarily.
     

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept