Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2023 | Story Edzani Nephalela | Photo Supplied
KMUN 2023
Young leaders unite! Fostering diplomacy and innovation – The Kovsies Model UN Summit 2023 shaped future global change makers!

The saying goes, ‘Leaders are born, not made,’ but what term do we use when more than 50 young individuals from various institutions gather to address and tackle many of our global socio-economic issues collectively?

The University of the Free State United Nations (UN) Chapter hosted the first of many Kovsies Model United Nations (KMUN) Summits – a simulation of the UN General Assembly (GA) – from 28 to 30 July 2023. The event brought together students from various institutions, including the University of Pretoria (UP), Wits, North-West University (NWU), as well as the UFS South and Qwaqwa campuses, who convened on the UFS Bloemfontein Campus for this prestigious gathering.

The students represented different countries and embarked on a comprehensive research project focused on the challenges faced by their respective nations and their progress in addressing them, which they had to present at the GA. Their investigations encompassed various Sustainable Development Goals (SDGs), including poverty eradication, building partnerships, promoting quality education, and advancing gender equality. These efforts align perfectly with the university's Vision 130, which is dedicated to promoting academic excellence, fostering social impact, and embracing diversity.

Siphilangenkosi Dlamini, Executive Chair of the UN Association of South Africa’s UFS Chapter and Student Assistant in the UFS Centre for Teaching and Learning (CTL), said that the summit served as a platform to bring together young people and student leaders from participating institutions to address an array of issues as if they were leaders of different countries.

"Our objective was to create a platform where these young minds could participate in constructive dialogues, refine their diplomatic skills, and address urgent global challenges. The most remarkable aspect was observing the participants' passion and dedication. Witnessing them wholeheartedly embrace the principles of diplomacy and cooperation was genuinely uplifting.”

Moreover, the attendees expressed their appreciation for this prestigious event, as it provided them with invaluable information and insights into what the future holds for them.

Keoratile Moloto, a North-West University student who proudly represented Belize – a Central American country – emphasised that this unique experience provided him with a valuable opportunity to acquire knowledge. As a student leader, he believed that this knowledge could positively influence and inspire both those he served and those in leadership positions.

“This is a too exciting initiative to ignore as a young individual who aspires to improve the world. I have always envisioned a time where I can make a difference in a community. I am big on most SDGs and saw this opportunity as a stepping-stone to educate myself on the proceedings. It is an awesome experience to engage with these topics rather than just being a viewer.”

Students were encouraged to collaborate and be active observers of pressing issues that affect their future. Student Affairs Assistant Director, Motlogelwa Moema, also advised the delegates to approach the debates with an open mind, network, familiarise themselves with the SDGs, and develop sustainable, innovative solutions to these socio-economic challenges.

This summit proved to be an enriching and transformative experience for all participants. From engaging in diplomatic negotiations to tackling global issues, delegates developed crucial leadership skills, fostered diplomacy, and shaped the future of international relations. As delegates from prestigious universities came together, the discussions were diverse, thought-provoking, and inspiring. Undoubtedly, the KMUN Summit left a lasting impact on the delegates and contributed to developing future leaders who would make a positive difference on the global stage.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept