Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 August 2023 | Story Angela Stott | Photo Supplied
Participants of the UFS Creative Clubs Programme
23 grade 10 participants in the UFS Creative Clubs Programme proudly pose with their awards.

All 23 grade 10 learners taking part in the University of the Free State’s (UFS) Creative Clubs Programme were awarded medals at the Bloemfontein regional Eskom Expo for Young Scientists (EYS) competition from 3 to 5 August 2023.

The learners, who attend Bloemfontein township schools, had been working on their projects for over a year as part of the Creative Clubs Programme, which is run by the UFS Faculty of Education. Guided by veteran Expo facilitators Dr Angela Stott and Coretha van den Heever, they attended 30 sessions on the UFS South Campus, with a total of 140 hours of face-to-face contact time, coupled with many hours of individual work at home, to prepare for the competition.

Their hard work paid off handsomely, with all 23 learners (who worked on 21 projects) achieving medals: six bronze, seven silver, and eight gold. Additionally, five of the learners won best-in-category awards, three won SA Youth Water prizes, and three were shortlisted for the international EYS competition.

“As an introvert, I found it difficult to explain my project to people, but I’ve developed communication skills and confidence through Expo,” said 15-year-old Nicolas Hugo, from Kagisho Secondary School, whose project won a gold medal. Nicolas studied water pollution levels at two inflow sites in the Bloudam catchment area, as well as the dam itself and its outflow, showing the astounding cleaning effectiveness of water reeds.

In addition to his gold medal he won the prize for the best project in his category, a special award in the category of water projects, and for the Best Development Project.

The UFS has a strong commitment to community engagement, and has been working with township schools throughout the province via school-university partnerships for over a decade. The 2023 Bloemfontein EYS competition celebrated the legacy of these partnerships not only through the 23 learners who were directly involved in the UFS programme over the past year, but also through the participation of 14 learners from two schools (Senakangwedi and Setjhaba Se Maketse) in Botshabelo as a direct result of the UFS’s work in those schools in the past. Before UFS ended its partnership with these schools, learners who had been involved in Expo programmes conducted by Dr Stott established science clubs in their schools. These clubs have continued to operate years after UFS exited the schools and the founding learners matriculated. This year these clubs yielded the winning project, Solar Power Stand, by Simthembile Hlahliso and Kabelo Sekoere from Senakangwedi High School.

Many of the learners said they have learned important skills through this process. “I didn’t know how to use a computer, but now I’m so good,” said Sylvia Hlangabeza, who won a gold award.

“I’m so proud of her, I cried,” said Sylvia’s proud mother.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept