Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 August 2023 | Story Angela Stott | Photo Supplied
Participants of the UFS Creative Clubs Programme
23 grade 10 participants in the UFS Creative Clubs Programme proudly pose with their awards.

All 23 grade 10 learners taking part in the University of the Free State’s (UFS) Creative Clubs Programme were awarded medals at the Bloemfontein regional Eskom Expo for Young Scientists (EYS) competition from 3 to 5 August 2023.

The learners, who attend Bloemfontein township schools, had been working on their projects for over a year as part of the Creative Clubs Programme, which is run by the UFS Faculty of Education. Guided by veteran Expo facilitators Dr Angela Stott and Coretha van den Heever, they attended 30 sessions on the UFS South Campus, with a total of 140 hours of face-to-face contact time, coupled with many hours of individual work at home, to prepare for the competition.

Their hard work paid off handsomely, with all 23 learners (who worked on 21 projects) achieving medals: six bronze, seven silver, and eight gold. Additionally, five of the learners won best-in-category awards, three won SA Youth Water prizes, and three were shortlisted for the international EYS competition.

“As an introvert, I found it difficult to explain my project to people, but I’ve developed communication skills and confidence through Expo,” said 15-year-old Nicolas Hugo, from Kagisho Secondary School, whose project won a gold medal. Nicolas studied water pollution levels at two inflow sites in the Bloudam catchment area, as well as the dam itself and its outflow, showing the astounding cleaning effectiveness of water reeds.

In addition to his gold medal he won the prize for the best project in his category, a special award in the category of water projects, and for the Best Development Project.

The UFS has a strong commitment to community engagement, and has been working with township schools throughout the province via school-university partnerships for over a decade. The 2023 Bloemfontein EYS competition celebrated the legacy of these partnerships not only through the 23 learners who were directly involved in the UFS programme over the past year, but also through the participation of 14 learners from two schools (Senakangwedi and Setjhaba Se Maketse) in Botshabelo as a direct result of the UFS’s work in those schools in the past. Before UFS ended its partnership with these schools, learners who had been involved in Expo programmes conducted by Dr Stott established science clubs in their schools. These clubs have continued to operate years after UFS exited the schools and the founding learners matriculated. This year these clubs yielded the winning project, Solar Power Stand, by Simthembile Hlahliso and Kabelo Sekoere from Senakangwedi High School.

Many of the learners said they have learned important skills through this process. “I didn’t know how to use a computer, but now I’m so good,” said Sylvia Hlangabeza, who won a gold award.

“I’m so proud of her, I cried,” said Sylvia’s proud mother.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept