Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 August 2023 | Story Angela Stott | Photo Supplied
Participants of the UFS Creative Clubs Programme
23 grade 10 participants in the UFS Creative Clubs Programme proudly pose with their awards.

All 23 grade 10 learners taking part in the University of the Free State’s (UFS) Creative Clubs Programme were awarded medals at the Bloemfontein regional Eskom Expo for Young Scientists (EYS) competition from 3 to 5 August 2023.

The learners, who attend Bloemfontein township schools, had been working on their projects for over a year as part of the Creative Clubs Programme, which is run by the UFS Faculty of Education. Guided by veteran Expo facilitators Dr Angela Stott and Coretha van den Heever, they attended 30 sessions on the UFS South Campus, with a total of 140 hours of face-to-face contact time, coupled with many hours of individual work at home, to prepare for the competition.

Their hard work paid off handsomely, with all 23 learners (who worked on 21 projects) achieving medals: six bronze, seven silver, and eight gold. Additionally, five of the learners won best-in-category awards, three won SA Youth Water prizes, and three were shortlisted for the international EYS competition.

“As an introvert, I found it difficult to explain my project to people, but I’ve developed communication skills and confidence through Expo,” said 15-year-old Nicolas Hugo, from Kagisho Secondary School, whose project won a gold medal. Nicolas studied water pollution levels at two inflow sites in the Bloudam catchment area, as well as the dam itself and its outflow, showing the astounding cleaning effectiveness of water reeds.

In addition to his gold medal he won the prize for the best project in his category, a special award in the category of water projects, and for the Best Development Project.

The UFS has a strong commitment to community engagement, and has been working with township schools throughout the province via school-university partnerships for over a decade. The 2023 Bloemfontein EYS competition celebrated the legacy of these partnerships not only through the 23 learners who were directly involved in the UFS programme over the past year, but also through the participation of 14 learners from two schools (Senakangwedi and Setjhaba Se Maketse) in Botshabelo as a direct result of the UFS’s work in those schools in the past. Before UFS ended its partnership with these schools, learners who had been involved in Expo programmes conducted by Dr Stott established science clubs in their schools. These clubs have continued to operate years after UFS exited the schools and the founding learners matriculated. This year these clubs yielded the winning project, Solar Power Stand, by Simthembile Hlahliso and Kabelo Sekoere from Senakangwedi High School.

Many of the learners said they have learned important skills through this process. “I didn’t know how to use a computer, but now I’m so good,” said Sylvia Hlangabeza, who won a gold award.

“I’m so proud of her, I cried,” said Sylvia’s proud mother.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept