Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 August 2023 | Story NONSINDISO QWABE | Photo SUPPLIED
Apartheid Studies, A Manifesto Book Launch
Prof Nyasha Mboti launched his book, Apartheid Studies: A Manifesto, on the UFS Qwaqwa Campus on 25 July 2023.

in a perpetual state of disaster and creating a normalised life, even if it is built on anomalous arrangements, Prof Nyasha Mboti launched his newly published book, Apartheid Studies: A Manifesto, on the UFS Qwaqwa Campus on 25 July 2023.

Prof Mboti is an Associate Professor and Head of the Department of Communication Science at the University of the Free State and is the pioneer and founder of Apartheid Studies, a new interdisciplinary field of study from the Global South, which utilises the notion of ‘apartheid’ as a paradigm by which to understand the confounding persistence and permanence of harm, oppression, and injustice.

Oppressive systems persist in modern South Africa

Making reference to the pass laws that were a dominant form/tool of oppression and segregation during the country’s apartheid system, he said apartheid created a “paradigm of life where things that aren’t supposed to go on, go on. 
Life has to go on even in oppression. People have the capacity to live with harm, and apartheid banks on people’s capacity to go on”.

The daring book posits itself as a first-of-its-kind authoritative study of the phenomenon of apartheid, shedding light on the continuing impact of apartheid decades after its formal abolishment and exploring the idea that while it was intended as a temporary phenomenon, it became deeply ingrained and normalised, persisting in various forms today.

“What apartheid is, is a temporary phenomenon that has become permanent. That is my argument. This book is an attempt to leverage how we live with harm as a way of doing something about it and hopefully putting an end to it. If you can go on one day living in harm and the next, before you know it, four decades of living under Apartheid from day to day have passed. Until we understand it, it persists,” he said.

By asking whether one would queue for a dompas, Prof Mboti challenged the audience to reflect on how oppressive systems persist when normalised, even when inflicting profound harm. 
“Would you queue for a dompas? If your answer is yes, then for me, that is an indication that Apartheid persists. Harm persists. Until we understand it, it persists.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept