Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2023 | Story Lunga Luthuli | Photo Francois van Vuuren
Bloemfontein Campus Solar Farm
The solar plant on the UFS’s Bloemfontein Campus, part of the university’s commitment to combatting loadshedding and embracing sustainable energy.

The University of the Free State (UFS) has installed solar plants across its three campuses.

The university says this is in response to the call for urgent solutions to loadshedding and the promotion of environmentally sustainable, cleaner, and renewable energy solutions.

Nicolaas Esterhuysen, Director of Engineering Services at UFS University Estates, said,

“The PV (photovoltaic) systems are grid-tied without storage to ensure maximum benefits and faster payback periods.”

Esterhuysen said the UFS has saved up to R32,5 million since the first solar plant was commissioned in 2017 to help the UFS reduce the impact of loadshedding and its carbon footprint and energy costs. “This will substantially increase this year with the commissioning of two large new ground-mounted solar plants on the Bloemfontein Campus,” he said.

“The microgrid installation on Qwaqwa Campus is one of the biggest solar diesel hybrid systems installed in South Africa. It allows us to keep the campus running despite excessive power interruptions.”

The UFS is currently embarking on research as part of the Grid-related Research Group (GRRP) under the Interdisciplinary Centre for Digital Futures (ICDF) to also help staff and students with understanding renewable energy and sustainability.

Esterhuysen said the plants are further evidence of the UFS’s commitment to renewable and energy saving solutions. “It is our flagship project, but our focus is also on energy saving initiatives – to ensure we are becoming more energy efficient and eliminate energy wastage. We have plans for expansion on all campuses. Some of the highlights are an off-grid solution for the new student centre at Qwaqwa Campus and to make South Campus a self-sustaining campus.”

The installed grid-tied system solar plants are operating without batteries on all three campuses, giving the university an optimal configuration between capital cost and payback period.


The energy generated at the solar plants:

Bloemfontein Campus – 3688 kWp

Qwaqwa Campus – 918 kWp

South Campus – 759 kWp

Paradys – 125 kWp

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept