Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 August 2023 | Story Anthony Mthembu | Photo Supplied
Ndumiso Mbuthuma
Ndumiso Mbuthuma is currently pursuing a PhD in Development Studies with a focus on floods and disasters.

Ndumiso Mbuthuma, a PhD student at the University of the Free State (UFS), was part of a team that won the Durban leg of the Students Reinventing Cities competition. “It was a beautiful experience and an opportunity to not only be a student again but to contribute to the greater good,” Mbuthuma said.

The Students Reinventing Cities competition is coordinated by C40, a global network of nearly 100 mayors of the world’s leading cities who are united in action to confront the climate crisis.

The Umgeni Interchange Team, which consisted of Mbuthuma, who is a student in the UFS Centre for Development Support, three students from the University of Cape Town, and one from an institution in France, participated in the Durban leg of the competition, which began in April 2023. 

After deliberations by C40 and city representatives, the team was informed on 13 July 2023 that they had been selected as the winners of the regional Durban competition.

The Students Reinventing Cities competition provides a platform for students and academics to work with cities around the world to formulate plans to combat climate change. This year the competition took place in 12 cities, including Barcelona, Durban, Rome, Melbourne, and Milan, among others. “The aim of the competition is to find ways in which we can begin to build cities that are climate change-friendly,” Mbuthuma said. 

The winning presentation

The Umgeni Interchange Team was allocated four hectares of land by the eThekwini municipality to come up with a development idea. The team members, who specialise in various fields, had to rely on each other to create a winning project. Their proposal entailed the development of a mixed-use, commercial, retail, and affordable-housing block. 

“We wanted to ensure affordable housing not just for the rich but even for those who aren’t,” Mbuthuma explained. His PhD, which focuses on floods and disasters, provided guidance on ensuring that the housing block was resistant to floods and other disasters. The proposal also suggested sustainable resource use, including the use of solar panels to generate energy in order to reduce the impact of loadshedding. 

Even though a victory in the competition is a great feeling, Mbuthuma is more appreciative of the opportunity to have been active in the battle for a more sustainable future. “To hear that policymakers are interested in hearing what I have to say is a big deal to me.”

Future endeavours

Although there has been a concerted effort globally to combat climate change, Mbuthuma believes that in countries such as South Africa there hasn’t been adequate discourse around how development will take place in a future defined by climate change and the resulting disasters expected. As such, he is committed to working towards normalising these conversations.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept