Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 August 2023 | Story Anthony Mthembu | Photo Supplied
Ndumiso Mbuthuma
Ndumiso Mbuthuma is currently pursuing a PhD in Development Studies with a focus on floods and disasters.

Ndumiso Mbuthuma, a PhD student at the University of the Free State (UFS), was part of a team that won the Durban leg of the Students Reinventing Cities competition. “It was a beautiful experience and an opportunity to not only be a student again but to contribute to the greater good,” Mbuthuma said.

The Students Reinventing Cities competition is coordinated by C40, a global network of nearly 100 mayors of the world’s leading cities who are united in action to confront the climate crisis.

The Umgeni Interchange Team, which consisted of Mbuthuma, who is a student in the UFS Centre for Development Support, three students from the University of Cape Town, and one from an institution in France, participated in the Durban leg of the competition, which began in April 2023. 

After deliberations by C40 and city representatives, the team was informed on 13 July 2023 that they had been selected as the winners of the regional Durban competition.

The Students Reinventing Cities competition provides a platform for students and academics to work with cities around the world to formulate plans to combat climate change. This year the competition took place in 12 cities, including Barcelona, Durban, Rome, Melbourne, and Milan, among others. “The aim of the competition is to find ways in which we can begin to build cities that are climate change-friendly,” Mbuthuma said. 

The winning presentation

The Umgeni Interchange Team was allocated four hectares of land by the eThekwini municipality to come up with a development idea. The team members, who specialise in various fields, had to rely on each other to create a winning project. Their proposal entailed the development of a mixed-use, commercial, retail, and affordable-housing block. 

“We wanted to ensure affordable housing not just for the rich but even for those who aren’t,” Mbuthuma explained. His PhD, which focuses on floods and disasters, provided guidance on ensuring that the housing block was resistant to floods and other disasters. The proposal also suggested sustainable resource use, including the use of solar panels to generate energy in order to reduce the impact of loadshedding. 

Even though a victory in the competition is a great feeling, Mbuthuma is more appreciative of the opportunity to have been active in the battle for a more sustainable future. “To hear that policymakers are interested in hearing what I have to say is a big deal to me.”

Future endeavours

Although there has been a concerted effort globally to combat climate change, Mbuthuma believes that in countries such as South Africa there hasn’t been adequate discourse around how development will take place in a future defined by climate change and the resulting disasters expected. As such, he is committed to working towards normalising these conversations.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept