Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 December 2023 | Story Leonie Bolleurs | Photo Supplied
3D-Printed Sculptural Artefact
The 3D-printed sculptural artefact entered by a group of third-years from the UFS.

A group of third-year students from the UFS Department of Architecture exhibited their work at the 2023 Venice Biennale, an international architecture exhibition showcasing ground-breaking architectural work from various countries around the world.

The contributions of world-class architects, researchers, and institutions in architecture are exhibited at this exhibition. “To be featured in this exhibition means that we are recognised by the international community as one of the leading architectural learning sites in South Africa and the work being produced at the institution deserves international acclaim,” says Phadi Mabe, Lecturer in the department.

The students representing the university with Mabe and participating in this event are Anya Strydom, Yamkelwa Simelane, Jan Truter, and Khalipha Radebe.

Mabe says the artefact produced from this project is a 3D-printed sculptural device that shows the translation between sound and object and illustrates the sound data through 3D-printed forms. “The sound structures of South Africa’s languages are mapped three-dimensionally to create a visual and spatial record of language. This unique artefact demonstrates that there are uncharted terrains in architecture, suggesting alternative dimensions that can be extrapolated to show that architecture can represent the intangible” he explains.

The UFS artefact was one of six design artefacts selected for the 18th International Architecture Exhibition – La Biennale di Venezia, which opened to the public in May and closes on 26 November 2023.

Hosted by the Department of Sport, Arts and Culture, the competition involved an emphasis on students incorporating African traditional architecture into their design models.

News Archive

Heart-valve studies receive international recognition
2017-07-11

 Description: Heart-valve studies  Tags: Heart-valve studies  

Prof Francis Smit, Head of the Department of
Cardiothoracic Surgery at the UFS, and Manager of the
Robert WM Frater Cardiovascular Research Centre, with
Kyle Davis, Mechanical Engineer at the centre.

Photo: Rulanzen Martin

Three heart-valve studies which have been developed at the Robert WM Frater Cardiovascular Research Centre at the School of Medicine at the University of the Free State (UFS) were recently presented in Monte Carlo at the conference of the prestigious global Heart Valve Society (HVS).

These studies are all headed by Prof Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS, and Manager of the Robert WM Frater Cardiovascular Research Centre.
Prof Smit says the HVS is a combination of the former heart-valve societies of Europe and the US. “Studies on heart-valve disease, heart-valve-related products and operations, as well as the design and development of new valves were presented. There are both clinical and development divisions.

He says the study in which the hemodynamics of their redesigned mechanical poppet valve was compared to a commercial bi-leaflet mechanical heart valve, was named as the best poster presentation in the experimental valve development and numerical flow dynamics division. The study, which was presented by Kyle Davis, mechanical engineer at the centre, competed against some of the best heart-valve research units in the world.

The redesigned valve, based on the 1960s Cape Town poppet valve, has the potential to provide a low-cost solution for mechanical heart-valve replacement. It is possible to produce the titanium ring with 3-D printers and is, together with the silicon poppet valve, extremely inexpensive compared to current mechanical valve-manufacturing processes.
The advantages of this valve over current mechanical valves is that, due to the effective and laminar flow characteristics, as well as the simple locking mechanisms, there is a reduced chance of valve thrombosis, and the need for anti-clotting drugs is therefore limited.

It was also confirmed that the new valve more than meets the published FDA (Federal Drug Agency) requirements, which determine the minimum standards of valves for human use in the US.

The redesigned valve also has a very low platelet activation impact, which is responsible for platelet thrombosis and leads to valve thrombosis or strokes. This valve is another heart-valve project by the centre, which is also in the process of evaluating a tri-leaflet polyurethane valve developed by them.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept