Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2023 | Story Leonie Bolleurs | Photo CHARL DEVENISH
Dr Marié Herbst
Dr Marié Herbst received her PhD with specialisation in Design, titled The (S)Pace of Images: establishing a practice of the conscious abstraction of motion. She hopes that the techniques and processes explored in her research will spark creativity in the way other designers approach their work.

“My research has unveiled the exquisite patterns generated by motion in nature and everyday objects – patterns that often evade our awareness as we encounter motion in a fleeting moment. Abstraction plays a pivotal role in unveiling these exquisite yet largely unnoticed patterns that surround us.”

This is the perspective of Dr Marié Herbst, who graduated at the University of the Free State (UFS) in December, receiving her PhD with specialisation in Design, titled The (S)Pace of Images: establishing a practice of the conscious abstraction of motion.

Abstraction, a key component of building design

Dr Herbst says that the abstract art movement has had a profound influence on how designers think about design. “Highly regarded architects such as Le Corbusier and Zaha Hadid identify their practice of creating abstract paintings as the driving force behind their ground-breaking building designs. Abstraction is therefore a key component of building design, although the process of how it is applied has historically not received adequate attention. My research explores the way abstraction enables designers to include design information that is only possible through the process of abstraction. One such aspect is motion. Through the process of tracing and superimposing still images extracted from films, I can integrate them into a single picture that shows the progression of time,” she explains.

She hopes that the techniques and processes explored in her research will ignite creativity in how other designers approach their work. “The concepts and techniques outlined in my research are intended to prompt other designers to reconsider the procedures they employ when crafting spaces,” she states.

In the future, Dr Herbst says, she would like to further explore the ideas sparked by her research, such as determining how design would be affected by recording movement in a three-dimensional environment. “New technologies such as LiDAR make the recording of three-dimensional information much simpler, and it will increasingly become a part of our everyday lives. This is a potentially useful information stream that could be applied to create novel designs,” she says.

‘Practice-based’ versus ‘design-led’ research

Prof Jonathan Noble, Head of the Department of Architecture, says this is the very first PhD from the new creative research programme in architecture that was launched in 2018, where the student has completed a ‘design-led’ enquiry. 

He explains that the new creative programme differentiates between ‘practice-based’ research, closely tied to real-world architecture, where candidates analyse and study their previous work, and ‘design-led’ research, which is led by an entirely new creative exploration that encourage speculation and experimentation. According to him, the latter leads to a creative enquiry, and this body of new work is analysed and written about.

Following Prof Noble, postgraduate research in architecture in South Africa has traditionally centred around architectural theory, cultural history, urban studies, and conservation. Creative research methods, however, have not been as prominent. The Department of Architecture is addressing this by introducing new postgraduate research modes supported by innovative research degrees, marking a departure from the traditional approach in South Africa.

“We believe the programme will have a lasting and significant effect upon our professional degrees, injecting professional creativity and new thinking into the life of the department, and serving as an opportunity to look deeply into design and pedagogic practices. Over time, the programme will strengthen ties with the profession and address the closed mentalities of the so-called ‘academic ivory tower’.”

“In addition to providing emerging young scholars with opportunities, the programme facilitates the documentation of the unique qualities of South African practice and makes an important contribution to future research publication and teaching pedagogy at the UFS and beyond,” he says.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept