Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2023 | Story Leonie Bolleurs | Photo CHARL DEVENISH
Dr Marié Herbst
Dr Marié Herbst received her PhD with specialisation in Design, titled The (S)Pace of Images: establishing a practice of the conscious abstraction of motion. She hopes that the techniques and processes explored in her research will spark creativity in the way other designers approach their work.

“My research has unveiled the exquisite patterns generated by motion in nature and everyday objects – patterns that often evade our awareness as we encounter motion in a fleeting moment. Abstraction plays a pivotal role in unveiling these exquisite yet largely unnoticed patterns that surround us.”

This is the perspective of Dr Marié Herbst, who graduated at the University of the Free State (UFS) in December, receiving her PhD with specialisation in Design, titled The (S)Pace of Images: establishing a practice of the conscious abstraction of motion.

Abstraction, a key component of building design

Dr Herbst says that the abstract art movement has had a profound influence on how designers think about design. “Highly regarded architects such as Le Corbusier and Zaha Hadid identify their practice of creating abstract paintings as the driving force behind their ground-breaking building designs. Abstraction is therefore a key component of building design, although the process of how it is applied has historically not received adequate attention. My research explores the way abstraction enables designers to include design information that is only possible through the process of abstraction. One such aspect is motion. Through the process of tracing and superimposing still images extracted from films, I can integrate them into a single picture that shows the progression of time,” she explains.

She hopes that the techniques and processes explored in her research will ignite creativity in how other designers approach their work. “The concepts and techniques outlined in my research are intended to prompt other designers to reconsider the procedures they employ when crafting spaces,” she states.

In the future, Dr Herbst says, she would like to further explore the ideas sparked by her research, such as determining how design would be affected by recording movement in a three-dimensional environment. “New technologies such as LiDAR make the recording of three-dimensional information much simpler, and it will increasingly become a part of our everyday lives. This is a potentially useful information stream that could be applied to create novel designs,” she says.

‘Practice-based’ versus ‘design-led’ research

Prof Jonathan Noble, Head of the Department of Architecture, says this is the very first PhD from the new creative research programme in architecture that was launched in 2018, where the student has completed a ‘design-led’ enquiry. 

He explains that the new creative programme differentiates between ‘practice-based’ research, closely tied to real-world architecture, where candidates analyse and study their previous work, and ‘design-led’ research, which is led by an entirely new creative exploration that encourage speculation and experimentation. According to him, the latter leads to a creative enquiry, and this body of new work is analysed and written about.

Following Prof Noble, postgraduate research in architecture in South Africa has traditionally centred around architectural theory, cultural history, urban studies, and conservation. Creative research methods, however, have not been as prominent. The Department of Architecture is addressing this by introducing new postgraduate research modes supported by innovative research degrees, marking a departure from the traditional approach in South Africa.

“We believe the programme will have a lasting and significant effect upon our professional degrees, injecting professional creativity and new thinking into the life of the department, and serving as an opportunity to look deeply into design and pedagogic practices. Over time, the programme will strengthen ties with the profession and address the closed mentalities of the so-called ‘academic ivory tower’.”

“In addition to providing emerging young scholars with opportunities, the programme facilitates the documentation of the unique qualities of South African practice and makes an important contribution to future research publication and teaching pedagogy at the UFS and beyond,” he says.

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept