Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2023 | Story André Damons | Photo Charl Devenish
Dr Shezree Tiel
Top student: Dr Shezree Tiel graduated top of her class and summa cum laude during the Faculty of Health Sciences graduation ceremony on Friday.

As she achieved the goals she had set for herself, Dr Shezree Tiel, one of the latest graduates from the University of the Free State (UFS) Faculty of Health Sciences (FoHS), developed the courage to not only define her goals, but aim for even more. This is the reason she graduated not only summa cum laude, but as the top student in her year group.

Dr Tiel was one of 459 students who graduated on Friday (8 December 2023) during the FoHS’s December graduation ceremony. She graduated with a MBChB degree and is one of eight students to do so summa cum laude. During her five years of studies to become a medical doctor, she was the top student in each of her year groups.  

“I feel very excited and still in disbelief, because it has been my dream since first year to graduate cum laude, but there were moments I felt I may have to accept that it may not be possible. So, I am very delighted that despite all the challenges I faced, my dream was realised,” she said.

According to her, she decided to study at UFS as it is the only university in South Africa that offered a five-year medical degree.

Building healthier and happier communities

Talking about how she achieved this, Dr Tiel, who will be doing her community service year in her home province of Mpumalanga, said what was consistent throughout her years of study, was the need to avoid a uniform approach to studying. Instead, she continued, she embraced different ways to learn.

Said Dr Tiel: “I embraced different ways to acquire knowledge and used these to identify a method of study that would be best suited for each module, chapter and sometimes each day. Everyday courage, resilience, patience, and perseverance played a vital role in accomplishing all my achievements. In spite of all of this, I will always attribute my achievements to my trust in Christ.”

Her desire to make the best possible use of every opportunity she gets to gain knowledge and the hope to use that knowledge to be useful to people and communities, motivated her on her journey to become a doctor. She decided to study medicine because she aspired to work with people in the pursuit of building healthier and happier communities. She believed that medicine would provide a great foundation and platform to accomplish this.

Though she is yet to decide in which field she would like to specialise one day, she believes it would be in internal medicine because it has always been one of her favourite rotations. “I do hope whichever one I go into will provide me with an opportunity to teach because that is one of the things I delight in.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept