Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2023 | Story André Damons | Photo Charl Devenish
Dr Shezree Tiel
Top student: Dr Shezree Tiel graduated top of her class and summa cum laude during the Faculty of Health Sciences graduation ceremony on Friday.

As she achieved the goals she had set for herself, Dr Shezree Tiel, one of the latest graduates from the University of the Free State (UFS) Faculty of Health Sciences (FoHS), developed the courage to not only define her goals, but aim for even more. This is the reason she graduated not only summa cum laude, but as the top student in her year group.

Dr Tiel was one of 459 students who graduated on Friday (8 December 2023) during the FoHS’s December graduation ceremony. She graduated with a MBChB degree and is one of eight students to do so summa cum laude. During her five years of studies to become a medical doctor, she was the top student in each of her year groups.  

“I feel very excited and still in disbelief, because it has been my dream since first year to graduate cum laude, but there were moments I felt I may have to accept that it may not be possible. So, I am very delighted that despite all the challenges I faced, my dream was realised,” she said.

According to her, she decided to study at UFS as it is the only university in South Africa that offered a five-year medical degree.

Building healthier and happier communities

Talking about how she achieved this, Dr Tiel, who will be doing her community service year in her home province of Mpumalanga, said what was consistent throughout her years of study, was the need to avoid a uniform approach to studying. Instead, she continued, she embraced different ways to learn.

Said Dr Tiel: “I embraced different ways to acquire knowledge and used these to identify a method of study that would be best suited for each module, chapter and sometimes each day. Everyday courage, resilience, patience, and perseverance played a vital role in accomplishing all my achievements. In spite of all of this, I will always attribute my achievements to my trust in Christ.”

Her desire to make the best possible use of every opportunity she gets to gain knowledge and the hope to use that knowledge to be useful to people and communities, motivated her on her journey to become a doctor. She decided to study medicine because she aspired to work with people in the pursuit of building healthier and happier communities. She believed that medicine would provide a great foundation and platform to accomplish this.

Though she is yet to decide in which field she would like to specialise one day, she believes it would be in internal medicine because it has always been one of her favourite rotations. “I do hope whichever one I go into will provide me with an opportunity to teach because that is one of the things I delight in.”

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept