Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2023 | Story André Damons | Photo Charl Devenish
Dr Shezree Tiel
Top student: Dr Shezree Tiel graduated top of her class and summa cum laude during the Faculty of Health Sciences graduation ceremony on Friday.

As she achieved the goals she had set for herself, Dr Shezree Tiel, one of the latest graduates from the University of the Free State (UFS) Faculty of Health Sciences (FoHS), developed the courage to not only define her goals, but aim for even more. This is the reason she graduated not only summa cum laude, but as the top student in her year group.

Dr Tiel was one of 459 students who graduated on Friday (8 December 2023) during the FoHS’s December graduation ceremony. She graduated with a MBChB degree and is one of eight students to do so summa cum laude. During her five years of studies to become a medical doctor, she was the top student in each of her year groups.  

“I feel very excited and still in disbelief, because it has been my dream since first year to graduate cum laude, but there were moments I felt I may have to accept that it may not be possible. So, I am very delighted that despite all the challenges I faced, my dream was realised,” she said.

According to her, she decided to study at UFS as it is the only university in South Africa that offered a five-year medical degree.

Building healthier and happier communities

Talking about how she achieved this, Dr Tiel, who will be doing her community service year in her home province of Mpumalanga, said what was consistent throughout her years of study, was the need to avoid a uniform approach to studying. Instead, she continued, she embraced different ways to learn.

Said Dr Tiel: “I embraced different ways to acquire knowledge and used these to identify a method of study that would be best suited for each module, chapter and sometimes each day. Everyday courage, resilience, patience, and perseverance played a vital role in accomplishing all my achievements. In spite of all of this, I will always attribute my achievements to my trust in Christ.”

Her desire to make the best possible use of every opportunity she gets to gain knowledge and the hope to use that knowledge to be useful to people and communities, motivated her on her journey to become a doctor. She decided to study medicine because she aspired to work with people in the pursuit of building healthier and happier communities. She believed that medicine would provide a great foundation and platform to accomplish this.

Though she is yet to decide in which field she would like to specialise one day, she believes it would be in internal medicine because it has always been one of her favourite rotations. “I do hope whichever one I go into will provide me with an opportunity to teach because that is one of the things I delight in.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept