Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2023 | Story Anthony Mthembu | Photo SUPPLIED
Albertus Engelbrecht
Albertus Engelbrecht: Lecturer in Singing and Coordinator of Vocal Studies at the Odeion School of Music.

The University of the Free State (UFS) is gearing up to honour a new group of graduates during the upcoming graduation ceremonies on 7-8 December 2023. Among the distinguished individuals set to grace the stage is Albertus Engelbrecht, Coordinator of Vocal Studies at the Odeion School of Music and an internationally recognised opera singer with a career spanning over two decades.

Engelbrecht has achieved a significant milestone, completing his PhD thesis titled “The Journey of a Versatile Singer”. On 7 December 2023, he will formally receive his qualification, marking the culmination of a seven-year academic journey. Reflecting on this achievement, Engelbrecht expressed his relief, stating, “It’s all still so surreal, but I think that the moment I walk onto that stage, then, will it only sink in.’’  

The journey of a versatile singer

His thesis is an auto-ethnographic study that delves into the preparation and performance of five different styles and genres of Western art music. This unique approach includes a practical component, as he actively participated in five different concerts or performances, ultimately contributing to his research. He shared his motivation, stating, ‘’I was investigating how it would be possible to sing different kinds of Western art music styles and genres. The idea came from my professional experience, where I found that to become a successful opera and concert singer, it’s better for one to be able to do different styles and genres.’’  

Looking ahead, Engelbrecht envisions his research making a meaningful impact on the development of emerging singers. He aspires to shape the future of vocal education, stating, “I hope that my contribution leads to new knowledge not only for singers but for their teachers and vocal coaches. This is so that they can approach music in the way it is written, and to find ways which make the music speak the best way it can. In this way, singers can be more versatile.’’  

Future plans

Post-graduation, Engelbrecht has ambitious plans to further his growth within the industry. Expressing his goals, he said, ‘’I would like to grow not just as a performing artist but as a researcher too.” Currently collaborating with his former supervisor on a research project focusing on performance analysis, Engelbrecht aims to delve deeper into the research aspect of his profession. Additionally, as a Lecturer of Singing at the UFS, he looks forward to engaging in more performing projects with his students.

In recognition of Albertus Engelbrecht’s remarkable achievement, the UFS community congratulates him on this significant milestone. His dedication to the field of vocal studies and commitment to fostering versatility in music is truly commendable. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept