Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2023 | Story Leonie Bolleurs | Photo Charl Devenish
Dr Michelle Goliath
Dr Michelle Goliath received her PhD, providing significantly useful insights into artisanal mining. She says it is the prospect of contributing to positive change and advancing understanding in the field that has been the most exciting and fulfilling aspect of completing this research.

Dr Michelle Goliath completed her PhD in the Department of Urban and Regional Planning at the University of the Free State (UFS) and received her qualification during the December graduations. 

The PhD, which she began in 2018 under supervision of Prof Malene Campbell, is titled Urban Pacification Strategies and Solutions: Towards a Contested Space Theory of Artisanal Mining.

The focus of her thesis was on finding strategies to address informal mining in urban areas. “It considers the formalisation of informal miners, adapted land use management, risk management solutions, and action research to solve complex problems. In addition, it also looks at the social, economic, and environmental dimensions of the challenge and proposes a unique practical methodology on how to solve similar complex problems and challenges that urban planners and policy makers face daily,” explains Dr Goliath. 

A foundation for informed decision making

She is of the opinion that her research provides a foundation for informed decision making by town planners who seek to proactively address and mitigate challenges around artisanal mining.

Dr Goliath’s thesis introduces innovative strategies for managing land use specifically designed for the challenges of artisanal mining. She believes that recognising the importance of flexible and innovative land-use policies demonstrates a deep understanding of the spatial aspects involved in effectively accommodating and regulating artisanal mining activities. As reported by Dr Goliath, this customised approach ensures that the rules fit the unique characteristics of artisanal mining, promoting sustainable urban development.

Moreover, by integrating action research methodologies into the thesis, a dynamic and collaborative element is introduced into the decision-making process. She says that engaging in practical, on-the-ground research in collaboration with practitioners – in this instance a community of women artisanal miners in Kimberley – advocates for evidence-based decision making in urban planning. “This approach not only enriches the theoretical foundation of the thesis, but also ensures that the proposed solutions are rooted in the practical realities of the South African context,” she states.

Furthermore, the thesis offers both theoretical insights and practical policy recommendations, ensuring that its research findings extend beyond academia. These insights are directly applicable to the challenges confronted by town planners in South Africa and policy planners in other SADEC countries who are still navigating the policy process for similar challenges. “The incorporation of global trends in artisanal mining allows for a comparative approach, enhancing the relevance and transferability of the recommendations both locally and internationally,” remarks Dr Goliath.

The impact of empowerment

She says it is fulfilling to witness the transformative impact of empowerment. “Engaging with and supporting women in the artisanal mining sector has not only enhanced their economic opportunities but has also contributed to broader social and community development. It is the empowerment of these women, their resilience, and the tangible positive shifts in their lives that stand out as the most rewarding and impactful outcomes of my work in Kimberley.”

Besides the opportunity to help this group of women, she was also excited about the chance to contribute new knowledge and insights to the field. “The process of delving into unexplored aspects of artisanal mining in Kimberley, conducting thorough investigations, and analysing longitudinal data has been intellectually stimulating,” she states.

“The prospect of offering novel perspectives, innovative solutions, and evidence-based recommendations through my research is particularly thrilling. Witnessing the potential for this work to make a meaningful impact on policies, practices, and the lives of individuals involved in artisanal mining adds a sense of purpose and excitement to the research journey,” concludes Dr Goliath.

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept