Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2023 | Story Leonie Bolleurs | Photo Charl Devenish
Dr Michelle Goliath
Dr Michelle Goliath received her PhD, providing significantly useful insights into artisanal mining. She says it is the prospect of contributing to positive change and advancing understanding in the field that has been the most exciting and fulfilling aspect of completing this research.

Dr Michelle Goliath completed her PhD in the Department of Urban and Regional Planning at the University of the Free State (UFS) and received her qualification during the December graduations. 

The PhD, which she began in 2018 under supervision of Prof Malene Campbell, is titled Urban Pacification Strategies and Solutions: Towards a Contested Space Theory of Artisanal Mining.

The focus of her thesis was on finding strategies to address informal mining in urban areas. “It considers the formalisation of informal miners, adapted land use management, risk management solutions, and action research to solve complex problems. In addition, it also looks at the social, economic, and environmental dimensions of the challenge and proposes a unique practical methodology on how to solve similar complex problems and challenges that urban planners and policy makers face daily,” explains Dr Goliath. 

A foundation for informed decision making

She is of the opinion that her research provides a foundation for informed decision making by town planners who seek to proactively address and mitigate challenges around artisanal mining.

Dr Goliath’s thesis introduces innovative strategies for managing land use specifically designed for the challenges of artisanal mining. She believes that recognising the importance of flexible and innovative land-use policies demonstrates a deep understanding of the spatial aspects involved in effectively accommodating and regulating artisanal mining activities. As reported by Dr Goliath, this customised approach ensures that the rules fit the unique characteristics of artisanal mining, promoting sustainable urban development.

Moreover, by integrating action research methodologies into the thesis, a dynamic and collaborative element is introduced into the decision-making process. She says that engaging in practical, on-the-ground research in collaboration with practitioners – in this instance a community of women artisanal miners in Kimberley – advocates for evidence-based decision making in urban planning. “This approach not only enriches the theoretical foundation of the thesis, but also ensures that the proposed solutions are rooted in the practical realities of the South African context,” she states.

Furthermore, the thesis offers both theoretical insights and practical policy recommendations, ensuring that its research findings extend beyond academia. These insights are directly applicable to the challenges confronted by town planners in South Africa and policy planners in other SADEC countries who are still navigating the policy process for similar challenges. “The incorporation of global trends in artisanal mining allows for a comparative approach, enhancing the relevance and transferability of the recommendations both locally and internationally,” remarks Dr Goliath.

The impact of empowerment

She says it is fulfilling to witness the transformative impact of empowerment. “Engaging with and supporting women in the artisanal mining sector has not only enhanced their economic opportunities but has also contributed to broader social and community development. It is the empowerment of these women, their resilience, and the tangible positive shifts in their lives that stand out as the most rewarding and impactful outcomes of my work in Kimberley.”

Besides the opportunity to help this group of women, she was also excited about the chance to contribute new knowledge and insights to the field. “The process of delving into unexplored aspects of artisanal mining in Kimberley, conducting thorough investigations, and analysing longitudinal data has been intellectually stimulating,” she states.

“The prospect of offering novel perspectives, innovative solutions, and evidence-based recommendations through my research is particularly thrilling. Witnessing the potential for this work to make a meaningful impact on policies, practices, and the lives of individuals involved in artisanal mining adds a sense of purpose and excitement to the research journey,” concludes Dr Goliath.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept