Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2023 | Story Leonie Bolleurs | Photo Charl Devenish
Dr Michelle Goliath
Dr Michelle Goliath received her PhD, providing significantly useful insights into artisanal mining. She says it is the prospect of contributing to positive change and advancing understanding in the field that has been the most exciting and fulfilling aspect of completing this research.

Dr Michelle Goliath completed her PhD in the Department of Urban and Regional Planning at the University of the Free State (UFS) and received her qualification during the December graduations. 

The PhD, which she began in 2018 under supervision of Prof Malene Campbell, is titled Urban Pacification Strategies and Solutions: Towards a Contested Space Theory of Artisanal Mining.

The focus of her thesis was on finding strategies to address informal mining in urban areas. “It considers the formalisation of informal miners, adapted land use management, risk management solutions, and action research to solve complex problems. In addition, it also looks at the social, economic, and environmental dimensions of the challenge and proposes a unique practical methodology on how to solve similar complex problems and challenges that urban planners and policy makers face daily,” explains Dr Goliath. 

A foundation for informed decision making

She is of the opinion that her research provides a foundation for informed decision making by town planners who seek to proactively address and mitigate challenges around artisanal mining.

Dr Goliath’s thesis introduces innovative strategies for managing land use specifically designed for the challenges of artisanal mining. She believes that recognising the importance of flexible and innovative land-use policies demonstrates a deep understanding of the spatial aspects involved in effectively accommodating and regulating artisanal mining activities. As reported by Dr Goliath, this customised approach ensures that the rules fit the unique characteristics of artisanal mining, promoting sustainable urban development.

Moreover, by integrating action research methodologies into the thesis, a dynamic and collaborative element is introduced into the decision-making process. She says that engaging in practical, on-the-ground research in collaboration with practitioners – in this instance a community of women artisanal miners in Kimberley – advocates for evidence-based decision making in urban planning. “This approach not only enriches the theoretical foundation of the thesis, but also ensures that the proposed solutions are rooted in the practical realities of the South African context,” she states.

Furthermore, the thesis offers both theoretical insights and practical policy recommendations, ensuring that its research findings extend beyond academia. These insights are directly applicable to the challenges confronted by town planners in South Africa and policy planners in other SADEC countries who are still navigating the policy process for similar challenges. “The incorporation of global trends in artisanal mining allows for a comparative approach, enhancing the relevance and transferability of the recommendations both locally and internationally,” remarks Dr Goliath.

The impact of empowerment

She says it is fulfilling to witness the transformative impact of empowerment. “Engaging with and supporting women in the artisanal mining sector has not only enhanced their economic opportunities but has also contributed to broader social and community development. It is the empowerment of these women, their resilience, and the tangible positive shifts in their lives that stand out as the most rewarding and impactful outcomes of my work in Kimberley.”

Besides the opportunity to help this group of women, she was also excited about the chance to contribute new knowledge and insights to the field. “The process of delving into unexplored aspects of artisanal mining in Kimberley, conducting thorough investigations, and analysing longitudinal data has been intellectually stimulating,” she states.

“The prospect of offering novel perspectives, innovative solutions, and evidence-based recommendations through my research is particularly thrilling. Witnessing the potential for this work to make a meaningful impact on policies, practices, and the lives of individuals involved in artisanal mining adds a sense of purpose and excitement to the research journey,” concludes Dr Goliath.

News Archive

Shack study holds research and social upliftment opportunities
2015-02-10

Photo: Stephen Collett

When Prof Basie Verster, retired head of the Department of Quantity Surveying at the University of the Free State (UFS), initiated an alternative form of housing for Johannes - one of his employees - a decision was made to base research on this initiative. This research project in Grasslands, Heidedal focused on the cost and energy efficiency of green and/or sustainable shacks.

Esti Jacobs from the Department of Quantity Surveying, together with an honours student in Quantity Surveying, a master’s student in Architecture, and young professionals at Verster Berry, helped with the project.

The physical goals of the project were to create a structure that is environmentally friendly, and maintains a comfortable interior climate in winter and summer, as well as being cost-effective to erect. The structure also had to be socially acceptable to the family and the community.

“The intention was to make a positive contribution to the community and to initiate social upliftment through this project. Structures such as the ‘green shack’ may serve as an intermediate step to future housing possibilities, since these structures are relatively primitive, but have economic value and could be marketable,” she said.

Esti explains the structure of the building, which consists of gum poles and South African pine bearers, with a timber roof and internal cement block flooring. The building is clad with corrugated iron and has a corrugated iron roof finish. Additional green elements added to the structure were internal Nutec cladding, glasswool insulation in walls, internal gypsum ceiling boards with ‘Think Pink’ insulation, internal dividing wall and door, polystyrene in the floors, and tint on the windows. A small solar panel for limited electricity use (one or two lights and electricity to charge a cellphone) and a Jojo water tank for household consumption by the inhabitants were also installed.

Esti said: “Phase one of the research has been completed. This phase consisted of an investigation into the cost of an alternative form of housing structure (comparing traditional shacks with the planned structure) as well as the construction process of the physical housing structure.

“Phase two of the research, commencing in February 2015, will last for two to three years. This phase will include the installation of temperature and relative humidity logging devices inside the existing traditional shack and the new green shack. The logs will be regularly monitored by the UFS Department of Quantity Surveying and Construction Management.

These data will enable the researchers to measure the differences in comfort levels inside the two different structures. The data, together with other information such as building materials and methods, are then processed by software programs. Through the simulation of different environments, building materials, and alternate forms of energy, software models can be used to come up with conclusions regarding more energy-friendly building materials and methods. This knowledge can be used to improve comfort levels within smaller, low-cost housing units.

The UFS will be working with Prof Jeff Ramsdell of the Appalachian State University in the USA and his team on the second phase of the project.

“This research project is ongoing and will be completed only in a few years’ time,” said Esti.

The results of the research will be published in accredited journals or at international conferences.

 

For more information or enquiries contact news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept