Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2023 | Story Leonie Bolleurs | Photo Charl Devenish
Dr Michelle Goliath
Dr Michelle Goliath received her PhD, providing significantly useful insights into artisanal mining. She says it is the prospect of contributing to positive change and advancing understanding in the field that has been the most exciting and fulfilling aspect of completing this research.

Dr Michelle Goliath completed her PhD in the Department of Urban and Regional Planning at the University of the Free State (UFS) and received her qualification during the December graduations. 

The PhD, which she began in 2018 under supervision of Prof Malene Campbell, is titled Urban Pacification Strategies and Solutions: Towards a Contested Space Theory of Artisanal Mining.

The focus of her thesis was on finding strategies to address informal mining in urban areas. “It considers the formalisation of informal miners, adapted land use management, risk management solutions, and action research to solve complex problems. In addition, it also looks at the social, economic, and environmental dimensions of the challenge and proposes a unique practical methodology on how to solve similar complex problems and challenges that urban planners and policy makers face daily,” explains Dr Goliath. 

A foundation for informed decision making

She is of the opinion that her research provides a foundation for informed decision making by town planners who seek to proactively address and mitigate challenges around artisanal mining.

Dr Goliath’s thesis introduces innovative strategies for managing land use specifically designed for the challenges of artisanal mining. She believes that recognising the importance of flexible and innovative land-use policies demonstrates a deep understanding of the spatial aspects involved in effectively accommodating and regulating artisanal mining activities. As reported by Dr Goliath, this customised approach ensures that the rules fit the unique characteristics of artisanal mining, promoting sustainable urban development.

Moreover, by integrating action research methodologies into the thesis, a dynamic and collaborative element is introduced into the decision-making process. She says that engaging in practical, on-the-ground research in collaboration with practitioners – in this instance a community of women artisanal miners in Kimberley – advocates for evidence-based decision making in urban planning. “This approach not only enriches the theoretical foundation of the thesis, but also ensures that the proposed solutions are rooted in the practical realities of the South African context,” she states.

Furthermore, the thesis offers both theoretical insights and practical policy recommendations, ensuring that its research findings extend beyond academia. These insights are directly applicable to the challenges confronted by town planners in South Africa and policy planners in other SADEC countries who are still navigating the policy process for similar challenges. “The incorporation of global trends in artisanal mining allows for a comparative approach, enhancing the relevance and transferability of the recommendations both locally and internationally,” remarks Dr Goliath.

The impact of empowerment

She says it is fulfilling to witness the transformative impact of empowerment. “Engaging with and supporting women in the artisanal mining sector has not only enhanced their economic opportunities but has also contributed to broader social and community development. It is the empowerment of these women, their resilience, and the tangible positive shifts in their lives that stand out as the most rewarding and impactful outcomes of my work in Kimberley.”

Besides the opportunity to help this group of women, she was also excited about the chance to contribute new knowledge and insights to the field. “The process of delving into unexplored aspects of artisanal mining in Kimberley, conducting thorough investigations, and analysing longitudinal data has been intellectually stimulating,” she states.

“The prospect of offering novel perspectives, innovative solutions, and evidence-based recommendations through my research is particularly thrilling. Witnessing the potential for this work to make a meaningful impact on policies, practices, and the lives of individuals involved in artisanal mining adds a sense of purpose and excitement to the research journey,” concludes Dr Goliath.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept