Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2023 | Story Dr Jared McDonald | Photo Supplied
Scholarship of Teaching and Learning Conference
From the left: Dr Eleanor Bernard, Assistant Director in the Centre for Teaching and Learning on the UFS Qwaqwa Campus; Dr Jared McDonald, Chief of Staff in the Office of the Vice-Chancellor and Principal; and Prof Pearl Sithole, Campus Vice-Principal: Academic and Research on the Qwaqwa Campus.

From 21 to 23 November, more than 160 delegates gathered at the Golden Gate Highlands National Park in the Eastern Free State for the fourth biennial conference on Scholarship of Teaching and Learning (SOTL) in the South, dubbed SOTL 4 the South.

This year’s iteration was proudly hosted by the University of the Free State (UFS) and organised by Dr Jared McDonald, Chief of Staff in the Office of the Vice-Chancellor and Principal; Dr Eleanor Bernard, Assistant Director in the Centre for Teaching and Learning on the UFS Qwaqwa Campus; and Prof Zach Simpson, Editor-in-Chief of the SOTL in the South journal. Established and emerging scholars, as well as postgraduate students working in the field of teaching and learning from across disciplines in Southern Africa, came together to share ideas, debate perspectives, and learn from experiences related to the conference theme: Teaching and Learning for Sustainable Futures.

The programme included presentations on a wide variety of topics, such as the challenges and opportunities of artificial intelligence in higher education, academic literacy, student success, teaching and learning for sustainable development, curriculum design, and digital futures. The programme also included two keynote presentations by leading scholars in education for sustainability, Prof Heila Lotz-Sisitka, Distinguished Professor and SARChI Research Chair in Global Change and Social Learning Systems in the Environmental Learning Research Centre at Rhodes University, and Prof Kasturi Behari-Leak, Associate Professor of Higher Education Studies and Dean of the University of Cape Town’s Centre for Higher Education Development.

The organisers were delighted with the quality of the scholarship that was shared. “This conference has been 18 months in the making, and we are grateful to all the delegates for embracing, and engaging with, the conference’s theme. We are also appreciative to all the reviewers on the Scientific Review Committee who were generous with their time, reflections, and critiques in assisting us to deliver a compelling, impactful programme,” said Dr McDonald. Dr Bernard added that “the conference would not have been possible without the generous support of the University of the Free State’s Executive Management and Centre for Teaching and Learning, as well as the senior management of the Qwaqwa Campus, who have supported the conference from the time it was just an idea”.

Prof Zach Simpson expressed his gratitude to the UFS for its support and assistance. “The last in-person conference of SOTL in the South was in 2019, before the COVID-19 pandemic. It was wonderful to see so many scholars come together in a beautiful location to engage with a compelling and topical conference theme.” Selected papers have been invited to contribute to a special issue of SOTL in the South, edited by the organisers and due for publication in mid-2024.

SOTL is an informal ‘body’ that is not affiliated with any particular parent organisation or institution. Its aim is to advance scholarship in teaching and learning across the Global South – conceived of not just in geographic terms – but as concerned with questions of power, access, inequity, and marginalisation, even where these might be present in the Global ‘North’. Moreover, it aims to give voice to novice SOTL practitioners and to serve as a platform for academics, particularly novice academics, to contribute their scholarly work.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept