Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2023 | Story LUNGA LUTHULI | Photo SUPPLIED
Milton Mogotsi
Charting unexplored territories: Milton Mogotsi, UFS PhD student, clinches victory in National 3MT Competition, unravelling infant enteric virome complexities, poised to revolutionise virology.

Milton Mogotsi, a PhD student at the University of the Free State (UFS), has secured a remarkable victory in the esteemed National 3 Minute Thesis competition (3MT), rising above formidable competition nationwide. This achievement follows Mogotsi’s earlier successes at faculty and institutional levels, where his presentations on the enteric virome of infants in the Free State stood out for their brilliance and significance.

The annual competition serves as a platform for postgraduate students to enhance their academic, presentation, and research communication skills by succinctly explaining their research to an intelligent but non-specialist audience within a concise 3-minute timeframe.

Reflecting on his initial reaction to the news, Mogotsi expressed a mix of shock and excitement. “I was genuinely shocked and excited when declared the winner,” he shared. This victory marked a significant milestone for Mogotsi, as a first-time participant, showcasing the excellence of both the UFS and the Faculty of Health Sciences.

Exploring uncharted territories

Mogotsi’s groundbreaking research delves into the unexplored domain of the enteric virome in infants, a subject inspired by his earlier master’s study in microbiology. “I was first introduced to this research during my master’s degree, and compelling findings motivated me to pursue further studies,” explained Mogotsi. Guided by his mentor, Prof Martin Nyaga, Mogotsi's doctoral journey unfolded into a profound exploration of the complexities of viruses colonising infants' guts and their implications on infant health.

Sharing key findings, Mogotsi highlighted that, despite detecting several disease-causing viruses in infants’ guts, none exhibited clinical symptoms. This emphasises the role of immunity and protective measures like breastfeeding. He also identified plant viruses, potentially transmitted through the environment or food sources, raising intriguing questions about infants’ exposure.

His pioneering use of viral metagenomics in unravelling the enteric virome’s complexity underscored its potential in understanding human health and disease. “Viral metagenomics has become a fundamental tool, shedding light on the composition of the infant’s enteric virome,” explained Mogotsi. 

Navigating challenges

Despite challenges, including disruptions due to COVID-19 and participant withdrawals, Mogotsi persevered, underscoring the importance of a longitudinal approach in comprehending the infant virome’s development over time. His success in the competition not only boosted his confidence but also expanded his networks, providing invaluable opportunities to present his findings internationally.

Mogotsi's advice to aspiring researchers mirrors his own journey: clarity of purpose, resilience in the face of challenges, fostering mentor relationships, and making the most of available resources. His groundbreaking work is poised to influence policy, guide vaccine strategies, and reshape our understanding of infant health.

As Mogotsi approaches the completion of his PhD, the future holds promising horizons for this trailblazing researcher, poised to leave an indelible mark on the world of virology and infant health.

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept