Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2023 | Story LUNGA LUTHULI | Photo SUPPLIED
Milton Mogotsi
Charting unexplored territories: Milton Mogotsi, UFS PhD student, clinches victory in National 3MT Competition, unravelling infant enteric virome complexities, poised to revolutionise virology.

Milton Mogotsi, a PhD student at the University of the Free State (UFS), has secured a remarkable victory in the esteemed National 3 Minute Thesis competition (3MT), rising above formidable competition nationwide. This achievement follows Mogotsi’s earlier successes at faculty and institutional levels, where his presentations on the enteric virome of infants in the Free State stood out for their brilliance and significance.

The annual competition serves as a platform for postgraduate students to enhance their academic, presentation, and research communication skills by succinctly explaining their research to an intelligent but non-specialist audience within a concise 3-minute timeframe.

Reflecting on his initial reaction to the news, Mogotsi expressed a mix of shock and excitement. “I was genuinely shocked and excited when declared the winner,” he shared. This victory marked a significant milestone for Mogotsi, as a first-time participant, showcasing the excellence of both the UFS and the Faculty of Health Sciences.

Exploring uncharted territories

Mogotsi’s groundbreaking research delves into the unexplored domain of the enteric virome in infants, a subject inspired by his earlier master’s study in microbiology. “I was first introduced to this research during my master’s degree, and compelling findings motivated me to pursue further studies,” explained Mogotsi. Guided by his mentor, Prof Martin Nyaga, Mogotsi's doctoral journey unfolded into a profound exploration of the complexities of viruses colonising infants' guts and their implications on infant health.

Sharing key findings, Mogotsi highlighted that, despite detecting several disease-causing viruses in infants’ guts, none exhibited clinical symptoms. This emphasises the role of immunity and protective measures like breastfeeding. He also identified plant viruses, potentially transmitted through the environment or food sources, raising intriguing questions about infants’ exposure.

His pioneering use of viral metagenomics in unravelling the enteric virome’s complexity underscored its potential in understanding human health and disease. “Viral metagenomics has become a fundamental tool, shedding light on the composition of the infant’s enteric virome,” explained Mogotsi. 

Navigating challenges

Despite challenges, including disruptions due to COVID-19 and participant withdrawals, Mogotsi persevered, underscoring the importance of a longitudinal approach in comprehending the infant virome’s development over time. His success in the competition not only boosted his confidence but also expanded his networks, providing invaluable opportunities to present his findings internationally.

Mogotsi's advice to aspiring researchers mirrors his own journey: clarity of purpose, resilience in the face of challenges, fostering mentor relationships, and making the most of available resources. His groundbreaking work is poised to influence policy, guide vaccine strategies, and reshape our understanding of infant health.

As Mogotsi approaches the completion of his PhD, the future holds promising horizons for this trailblazing researcher, poised to leave an indelible mark on the world of virology and infant health.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept