Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 December 2023 Photo Francois van Vuuren
MACE Awards Winners 2023
From left are: Belinda Janeke, Head: Career Services; Barend Nagel, Multimedia Specialist, Department of Communication and Marketing; Moeketsi Mogotsi, Social Media Specialist, Department of Communication and Marketing; Lacea Loader, Senior Director: Department of Communication and Marketing; Tobias van den Bergh, Counselling Psychologist, Student Counselling and Development; Mojalefa Rabolinyane, Assistant Officer, Student Counselling and Development; Burneline Kaars, Head: Leadership, Organisational Development and Employee Well-being; Lizet Holtzhausen, Officer, Leadership, Organisational Development and Employee Well-being; Marieta Landman, Senior Officer, Department of Student Recruitment Services; and Sandile Ncedani, Senior Officer, Department of Student Recruitment Services.

On 16 November 2023, five departments at the University of the Free State made a big splash at the national association for Marketing, Advancement, and Communication in Education (MACE) 2023 Excellence Awards.

Collectively, the UFS won 11 awards, including the sought-after Chairperson’s Award of Excellence, awarded to a single entry that embodies true excellence in marketing, advancement, or communication. In other words, the overall winner across all divisions and categories.

Celebrating the best in marketing, advancement, and communication

Hosted annually, the MACE Excellence Awards recognise and celebrate the excellence of specialists and practitioners in marketing, advancement, and communication in the higher-education sector. MACE plays a vital role in adding value to practitioners through high-quality development programmes, facilitating networking partnerships and transformation, as well as promoting best practices among these professions at member institutions.

The MACE National Conference held on the Belville Campus of the University of the Western Cape from 15 to 16 November 2023, preceded the glamorous awards function. The theme for the conference was ‘Higher education institutions in a world of artificial intelligence’. After two informative days, delegates attended the awards function, where their work and skills were recognised.

The winner takes it all

The UFS Leadership, Organisational Development, and Employee Well-Being won the Chairperson’s Award for its Women’s Day Breakfast. This memorable event also received a platinum award. Silver awards were raked in by Student Counselling and Development (DoDay Mental Health Campaign), Career Services (Careers Podcast Series), Student Recruitment Services (Motion Graphics Video), and the Department of Communication and Marketing (DCM) won three silver awards for its Social Media Squad project, the Vision 130 video, and the Dr Maye Musk Honorary Doctorate Graduation Ceremony. Bronze awards were given to DCM for the Vision 130 Launch and Youth Month, and the Kovsie Connect Virtual Experience won Student Recruitment Services its second award of the evening.

Excellence in everything we do

Lacea Loader, Senior Director: Communication and Marketing and Coordinator of the MACE Excellence Awards, says the recognition affirms the high level of communication generated by the institution. “I am immensely proud of the national recognition from our peers for the quality and innovative work we do. This year in particular, different departments entered the awards programme, which is exemplary of the integration and synergy of the work done in the different departments,” she says.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept