Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 February 2023 | Story Kekeletso Takang
Frans Benecke  and Su-Mari Dreyer
UFS students Frans Benecke and Su-Mari Dreyer are two of the beneficiaries of the programme and will spend one year in Salzburg, from February 2023 until January 2024.

Nowadays, universities strive more and more to develop global citizens. For the University of the Free State (UFS) and the Salzburg University of Applied Sciences (SUAS) in Austria, collaboration on the Consecutive Master’s Degree Programme in International Finance is directed at this. 

This exclusive and pioneering collaboration between the Department of Economics and Finance at the UFS and the Department of Management and Tourism at SUAS emanates from more than 15 years of collaboration between Prof Johan Coetzee (UFS) and Prof Christine Mitter (SUAS ).

The collaboration addresses the concerns constantly raised in South Africa that graduates do not have the requisite practical skills when entering the workplace. The UFS attempts to bridge this gap and contribute to a better-equipped, employable South African graduate who understands the link between theory and application in a problem-riddled world entering the Fourth Industrial Revolution.

UFS students Frans Benecke and Su-Mari Dreyer are two of the beneficiaries of the programme and will spend one year in Salzburg, from February 2023 until January 2024. 

“This is a dream come true, a dream I didn’t even know I had. To experience a different culture through educational and cultural exchange will deepen my understanding of international relationships, which is a driver of development,” says Dreyer, who completed her MCom degree at the UFS.

Interdisciplinary research

The Consecutive Master’s Degree Programme in International Finance allows students wishing to pursue a master’s degree to acquire two degrees over a two-year study period: an MCom specialising in Finance in the Department of Economics and Finance at the UFS, and an MA in Business Management specialising in Financial Risk Management at SUAS in Austria. The degrees are done on location in Bloemfontein and Salzburg respectively. The UFS master’s is more quantitative in nature and exposes students to highly technical methods and applications, while the SUAS master’s degree is more qualitative in nature and exposes students to more practical real-world management scenarios. 

“The Faculty of Economic and Management Sciences has a long-standing and valued partnership with the Salzburg University of Applied Sciences. As a faculty, we see the development of the consecutive master’s degree as a wonderful opportunity for students from both universities to participate in the learning opportunities that both universities offer. These opportunities transcend the academic learning that will take place, to also include the exposure of students to the culture and life in the partner country,” says Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences. “We believe the learning that will take place through the exposure that the consecutive degree offers, will improve students’ employability and contribute to them building successful careers.”

Bridging the gap

As part of the curriculum requirements, students will also be offered the opportunity to do a short apprenticeship in Austria. 

Benecke, who also completed his UFS master’s degree, says he hopes the programme will serve as a call to action for students considering postgraduate studies in the Department of Economics and Finance at the UFS.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept