Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 February 2023 | Story Kekeletso Takang
Frans Benecke  and Su-Mari Dreyer
UFS students Frans Benecke and Su-Mari Dreyer are two of the beneficiaries of the programme and will spend one year in Salzburg, from February 2023 until January 2024.

Nowadays, universities strive more and more to develop global citizens. For the University of the Free State (UFS) and the Salzburg University of Applied Sciences (SUAS) in Austria, collaboration on the Consecutive Master’s Degree Programme in International Finance is directed at this. 

This exclusive and pioneering collaboration between the Department of Economics and Finance at the UFS and the Department of Management and Tourism at SUAS emanates from more than 15 years of collaboration between Prof Johan Coetzee (UFS) and Prof Christine Mitter (SUAS ).

The collaboration addresses the concerns constantly raised in South Africa that graduates do not have the requisite practical skills when entering the workplace. The UFS attempts to bridge this gap and contribute to a better-equipped, employable South African graduate who understands the link between theory and application in a problem-riddled world entering the Fourth Industrial Revolution.

UFS students Frans Benecke and Su-Mari Dreyer are two of the beneficiaries of the programme and will spend one year in Salzburg, from February 2023 until January 2024. 

“This is a dream come true, a dream I didn’t even know I had. To experience a different culture through educational and cultural exchange will deepen my understanding of international relationships, which is a driver of development,” says Dreyer, who completed her MCom degree at the UFS.

Interdisciplinary research

The Consecutive Master’s Degree Programme in International Finance allows students wishing to pursue a master’s degree to acquire two degrees over a two-year study period: an MCom specialising in Finance in the Department of Economics and Finance at the UFS, and an MA in Business Management specialising in Financial Risk Management at SUAS in Austria. The degrees are done on location in Bloemfontein and Salzburg respectively. The UFS master’s is more quantitative in nature and exposes students to highly technical methods and applications, while the SUAS master’s degree is more qualitative in nature and exposes students to more practical real-world management scenarios. 

“The Faculty of Economic and Management Sciences has a long-standing and valued partnership with the Salzburg University of Applied Sciences. As a faculty, we see the development of the consecutive master’s degree as a wonderful opportunity for students from both universities to participate in the learning opportunities that both universities offer. These opportunities transcend the academic learning that will take place, to also include the exposure of students to the culture and life in the partner country,” says Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences. “We believe the learning that will take place through the exposure that the consecutive degree offers, will improve students’ employability and contribute to them building successful careers.”

Bridging the gap

As part of the curriculum requirements, students will also be offered the opportunity to do a short apprenticeship in Austria. 

Benecke, who also completed his UFS master’s degree, says he hopes the programme will serve as a call to action for students considering postgraduate studies in the Department of Economics and Finance at the UFS.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept