Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 February 2023 | Story Kekeletso Takang
Frans Benecke  and Su-Mari Dreyer
UFS students Frans Benecke and Su-Mari Dreyer are two of the beneficiaries of the programme and will spend one year in Salzburg, from February 2023 until January 2024.

Nowadays, universities strive more and more to develop global citizens. For the University of the Free State (UFS) and the Salzburg University of Applied Sciences (SUAS) in Austria, collaboration on the Consecutive Master’s Degree Programme in International Finance is directed at this. 

This exclusive and pioneering collaboration between the Department of Economics and Finance at the UFS and the Department of Management and Tourism at SUAS emanates from more than 15 years of collaboration between Prof Johan Coetzee (UFS) and Prof Christine Mitter (SUAS ).

The collaboration addresses the concerns constantly raised in South Africa that graduates do not have the requisite practical skills when entering the workplace. The UFS attempts to bridge this gap and contribute to a better-equipped, employable South African graduate who understands the link between theory and application in a problem-riddled world entering the Fourth Industrial Revolution.

UFS students Frans Benecke and Su-Mari Dreyer are two of the beneficiaries of the programme and will spend one year in Salzburg, from February 2023 until January 2024. 

“This is a dream come true, a dream I didn’t even know I had. To experience a different culture through educational and cultural exchange will deepen my understanding of international relationships, which is a driver of development,” says Dreyer, who completed her MCom degree at the UFS.

Interdisciplinary research

The Consecutive Master’s Degree Programme in International Finance allows students wishing to pursue a master’s degree to acquire two degrees over a two-year study period: an MCom specialising in Finance in the Department of Economics and Finance at the UFS, and an MA in Business Management specialising in Financial Risk Management at SUAS in Austria. The degrees are done on location in Bloemfontein and Salzburg respectively. The UFS master’s is more quantitative in nature and exposes students to highly technical methods and applications, while the SUAS master’s degree is more qualitative in nature and exposes students to more practical real-world management scenarios. 

“The Faculty of Economic and Management Sciences has a long-standing and valued partnership with the Salzburg University of Applied Sciences. As a faculty, we see the development of the consecutive master’s degree as a wonderful opportunity for students from both universities to participate in the learning opportunities that both universities offer. These opportunities transcend the academic learning that will take place, to also include the exposure of students to the culture and life in the partner country,” says Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences. “We believe the learning that will take place through the exposure that the consecutive degree offers, will improve students’ employability and contribute to them building successful careers.”

Bridging the gap

As part of the curriculum requirements, students will also be offered the opportunity to do a short apprenticeship in Austria. 

Benecke, who also completed his UFS master’s degree, says he hopes the programme will serve as a call to action for students considering postgraduate studies in the Department of Economics and Finance at the UFS.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept