Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 February 2023 | Story Kekeletso Takang
Frans Benecke  and Su-Mari Dreyer
UFS students Frans Benecke and Su-Mari Dreyer are two of the beneficiaries of the programme and will spend one year in Salzburg, from February 2023 until January 2024.

Nowadays, universities strive more and more to develop global citizens. For the University of the Free State (UFS) and the Salzburg University of Applied Sciences (SUAS) in Austria, collaboration on the Consecutive Master’s Degree Programme in International Finance is directed at this. 

This exclusive and pioneering collaboration between the Department of Economics and Finance at the UFS and the Department of Management and Tourism at SUAS emanates from more than 15 years of collaboration between Prof Johan Coetzee (UFS) and Prof Christine Mitter (SUAS ).

The collaboration addresses the concerns constantly raised in South Africa that graduates do not have the requisite practical skills when entering the workplace. The UFS attempts to bridge this gap and contribute to a better-equipped, employable South African graduate who understands the link between theory and application in a problem-riddled world entering the Fourth Industrial Revolution.

UFS students Frans Benecke and Su-Mari Dreyer are two of the beneficiaries of the programme and will spend one year in Salzburg, from February 2023 until January 2024. 

“This is a dream come true, a dream I didn’t even know I had. To experience a different culture through educational and cultural exchange will deepen my understanding of international relationships, which is a driver of development,” says Dreyer, who completed her MCom degree at the UFS.

Interdisciplinary research

The Consecutive Master’s Degree Programme in International Finance allows students wishing to pursue a master’s degree to acquire two degrees over a two-year study period: an MCom specialising in Finance in the Department of Economics and Finance at the UFS, and an MA in Business Management specialising in Financial Risk Management at SUAS in Austria. The degrees are done on location in Bloemfontein and Salzburg respectively. The UFS master’s is more quantitative in nature and exposes students to highly technical methods and applications, while the SUAS master’s degree is more qualitative in nature and exposes students to more practical real-world management scenarios. 

“The Faculty of Economic and Management Sciences has a long-standing and valued partnership with the Salzburg University of Applied Sciences. As a faculty, we see the development of the consecutive master’s degree as a wonderful opportunity for students from both universities to participate in the learning opportunities that both universities offer. These opportunities transcend the academic learning that will take place, to also include the exposure of students to the culture and life in the partner country,” says Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences. “We believe the learning that will take place through the exposure that the consecutive degree offers, will improve students’ employability and contribute to them building successful careers.”

Bridging the gap

As part of the curriculum requirements, students will also be offered the opportunity to do a short apprenticeship in Austria. 

Benecke, who also completed his UFS master’s degree, says he hopes the programme will serve as a call to action for students considering postgraduate studies in the Department of Economics and Finance at the UFS.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept