Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2023 | Story Rulanzen Martin | Photo Anja Aucamp
Samson Diamond, Jeanne-Louise Moolman, Prof Anmari van der Westhuizen-Joubert, and Sharon de Kock with the QoP instruments created by luthier Brian Lisus to honour SA’s Nobel peace laureates.

Hope, the viola; Freedom, the first violin; Peace, the second violin; and Reconciliation, the cello, collectively known as the Quartet of Peace (QoP), have found their home at the UFS. The Odeion String Quartet (OSQ) has been made the custodians of this world-famous quartet created by Brian Lisus. The instruments were created by Lisus in 2010 to commemorate the four Nobel peace laureates of South Africa, namely Albert Luthuli, Nelson Mandela, FW de Klerk, and Desmond Tutu. In March 2022, Lisus presented a lecture in the Odeion Theatre to officially present these instruments to the UFS.

Many new performing opportunities 

“The trustees found that justice will be done by making the Odeion String Quartet the new custodians, since they are the only quartet-in-residence at a South African university,” says Prof Anmari van der Westhuizen-Joubert, cellist and Head of the OSQ.

As the custodians of the QoP, it brought many new performing opportunities, both nationally and internationally. “It can also be used in presentations of lectures on all subjects and not only of a political nature. In this way, string quartet music reaches more people than just those who go to concert halls,” Prof Van der Westhuizen-Joubert says. The OSQ consists of Prof Van der Westhuizen-Joubert (cellist), Samson Diamond (violinist and leader of the string quartet), Sharon de Kock (violinist), and Jeanne-Louise Moolman (violinist).

Unique part of UFS identity

The uniqueness of the QoP instruments will be an important element of the OSQ, the Odeion School of Music, the Faculty of the Humanities, as well as the entire UFS community. “One of the plans is to raise money to enable students to come and study with the Odeion String Quartet members at the UFS,” Prof Van der Westhuizen-Joubert says. Another historic moment with these instruments took place in October 2022, when the instruments took centre stage at a concert hosted by Prof Francis Petersen, UFS Rector and Vice-Chancellor, at Constitution Hill in Johannesburg. At this event, the QoP instruments were introduced to the public, important stakeholders, and to guests of the UFS. Other plans include trips to international festivals such as the Ojai Music Festival in the USA in 2023 and the String Quartet Biennale in Amsterdam in 2024.

*This article  first appeared in the Bult Magazine.

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept