Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2023 | Story Rulanzen Martin | Photo Anja Aucamp
Samson Diamond, Jeanne-Louise Moolman, Prof Anmari van der Westhuizen-Joubert, and Sharon de Kock with the QoP instruments created by luthier Brian Lisus to honour SA’s Nobel peace laureates.

Hope, the viola; Freedom, the first violin; Peace, the second violin; and Reconciliation, the cello, collectively known as the Quartet of Peace (QoP), have found their home at the UFS. The Odeion String Quartet (OSQ) has been made the custodians of this world-famous quartet created by Brian Lisus. The instruments were created by Lisus in 2010 to commemorate the four Nobel peace laureates of South Africa, namely Albert Luthuli, Nelson Mandela, FW de Klerk, and Desmond Tutu. In March 2022, Lisus presented a lecture in the Odeion Theatre to officially present these instruments to the UFS.

Many new performing opportunities 

“The trustees found that justice will be done by making the Odeion String Quartet the new custodians, since they are the only quartet-in-residence at a South African university,” says Prof Anmari van der Westhuizen-Joubert, cellist and Head of the OSQ.

As the custodians of the QoP, it brought many new performing opportunities, both nationally and internationally. “It can also be used in presentations of lectures on all subjects and not only of a political nature. In this way, string quartet music reaches more people than just those who go to concert halls,” Prof Van der Westhuizen-Joubert says. The OSQ consists of Prof Van der Westhuizen-Joubert (cellist), Samson Diamond (violinist and leader of the string quartet), Sharon de Kock (violinist), and Jeanne-Louise Moolman (violinist).

Unique part of UFS identity

The uniqueness of the QoP instruments will be an important element of the OSQ, the Odeion School of Music, the Faculty of the Humanities, as well as the entire UFS community. “One of the plans is to raise money to enable students to come and study with the Odeion String Quartet members at the UFS,” Prof Van der Westhuizen-Joubert says. Another historic moment with these instruments took place in October 2022, when the instruments took centre stage at a concert hosted by Prof Francis Petersen, UFS Rector and Vice-Chancellor, at Constitution Hill in Johannesburg. At this event, the QoP instruments were introduced to the public, important stakeholders, and to guests of the UFS. Other plans include trips to international festivals such as the Ojai Music Festival in the USA in 2023 and the String Quartet Biennale in Amsterdam in 2024.

*This article  first appeared in the Bult Magazine.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept