Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 February 2023 | Story André Damons | Photo Supplied
Prof Paul Oberholster
Prof Paul Oberholster is Director of the Centre for Environmental Management at the University of the Free State (UFS) and winner of the NSTF-Water Research Commission (WRC) Award for his contribution to water resource management in South Africa in 2021.

This year has already seen severe natural disasters across the world, including devastating floods and forest fires, which serve as reminders of the planet's fragility and the importance of addressing the impacts of climate change. Nature-based solutions can play a critical role in mitigating climate change and offer a range of benefits to both people and the planet.

Prof Paul Oberholster – Director of the Centre for Environmental Management at the University of the Free State (UFS) – and his team played their part by researching nature-based solutions as an alternative to treating acid mine drainage (AMD) and domestic wastewater. Freshwater algae as a phycoremediation solution approach have the potential to help society and the environment in several ways.  

Prof Oberholster, winner of the NSTF-Water Research Commission (WRC) Award for his contribution to water resource management in South Africa in 2021, says nature-based solutions also play a vital role in realising the Kunming-Montreal Global Biodiversity Framework (GBF), which was adopted during the United Nations Biodiversity Conference (COP15) on 19 December 2022 in Montreal, Canada. The GBF sets global targets for 2030 that aim to effectively conserve and manage at least 30% of the world's lands, inland waters, coastal areas, and oceans, prioritise ecologically representative and well-connected systems of protected areas, restore at least 30% of degraded ecosystems, reduce the loss of areas of high biodiversity importance, cut global food waste in half, and significantly reduce over-consumption and waste generation.

What are nature-based solutions?

According to Prof Oberholster, nature-based solutions are approaches that utilise natural ecosystem processes, functions, and structures to address a variety of planetary health challenges, including climate change. These solutions involve protecting, restoring, regenerating, and sustainably managing natural ecosystems, such as forests, wetlands, and oceans, to enhance their ability to store carbon, regulate water flow, reinstate ecosystem services, and provide habitat for wildlife.

The significance of nature-based solutions regarding climate change adaptation is multifaceted. Firstly, natural ecosystems are essential for regulating the earth's climate, as they absorb and store carbon dioxide from the atmosphere, which helps to mitigate the effects of greenhouse gas emissions. 

Secondly, nature-based solutions can help to reduce the vulnerability of human communities to the impact of climate change, such as flooding, drought, and extreme weather events. Thirdly, nature-based solutions can provide multiple benefits beyond climate change adaptation, such as enhancing biodiversity, supporting sustainable livelihoods, and improving human health and well-being.

Prof Oberholster’s work

Algae-based treatment systems use bio-stimulation applications and natural processes to remove pollutants from water, which can be more cost-effective and produce less waste. Traditional treatment methods for AMD and domestic wastewater often rely on using chemicals or energy-intensive processes, which can be expensive and have negative environmental impacts. 

"Algae-based treatment systems can help mitigate the environmental impacts of AMD and domestic wastewater by removing pollutants such as heavy metals and reducing the acidity of the water. This can help restore the ecosystem and protect public health. Similarly, algae-based treatment systems can remove nutrients from domestic wastewater, reducing its environmental impact and preventing eutrophication, which can harm aquatic life," says Prof Oberholster.

Clean water and sanitation, forestry (plant life and agriculture), and climate change are part of the 17 Sustainable Development Goals (SDGs) making Prof Oberholster's research much more important. 


Meet a Limnologist, Paul Oberholster (NSTF-South32 Award Winner): 


Significance of nature-based solutions

According to him, there are several reasons why we should make more use of nature-based solutions. It can help reduce our carbon footprint and mitigate the impact of climate change. It can help protect the environment and promote biodiversity. By reducing waste and pollution, we can preserve natural resources and ecosystems and ensure they remain healthy and vibrant for future generations.

Dr Yolandi Schoeman , a postdoc student of Prof Oberholster, says the significance of nature-based solutions is multifaceted and includes environmental, social, and economic benefits. Nature-based solutions can play a critical role in mitigating climate change by sequestering carbon, enhancing carbon sinks, and reducing greenhouse gas emissions. By protecting and restoring natural ecosystems, we can enhance their ability to store carbon, which in turn helps to mitigate the effects of climate change.

"These solutions are also important for climate change adaptation. Nature-based solutions can also help to reduce the vulnerability of human communities to the impact of climate change, such as flooding, drought, and extreme weather events. By regenerating natural wetlands and floodplains, for example, we can help to reduce the risk of flooding, while reforestation can help to prevent soil erosion and landslides,'' says Dr Schoeman.

According to her, rewilding is another key reason why nature-based solutions are critical in the process of regenerating natural ecosystems. Through rewilding, habitat can be reinstated for a wide range of plant and animal species, lost species guilds can be restored by giving them space to thrive, population enhancement can be enabled, and key native species can be reintroduced as essential ecosystem builders. By protecting, regenerating, and restoring these ecosystems, we can help conserve biodiversity and prevent species loss, ultimately securing our own survival on earth.

UFS research initiative relating to nature-based solutions 

The UFS has a number of ongoing research initiatives and projects focused on nature-based technology solutions, including projects focused on climate adaptation in water resource management, establishing the water-climate-food-rewilding-land nexus as a planetary health ‘stock-take’ of ecosystems, reducing water usage, reinstating connections as coupled human and natural systems, enabling rewilding, and increasing water efficiency. 

The UFS is also involved in research that addresses water pollution through developing and implementing nature-based systems such as hybrid constructed wetlands, phytoremediation and phycoremediation, regenerating natural wetland systems and riparian buffer zones, bio-remediation, design of bio-intelligent systems, integrating grey and green infrastructure, and the use of big data and analytics in the design and management of nature-based solutions for water, according to Dr Schoeman. 

Ecological Engineering Institute of Africa

Prof Oberholster is leading a globally significant initiative that has recently been established at the UFS – the Ecological Engineering Institute of Africa (EEIA). The EEIA's managing members include scientists and engineers from across the world, including Egypt, Ghana, Greece, and the United States of America (USA). 

Prof William Mitsch, an original co-founder of the EEIA, is also a managing member. Prof Mitsch, regarded as the best wetland scientist in the world, is also known for his positions as director of the Everglades Wetland Research Park, United States National Ramsar committee chair (to name but a few), and is an ecological engineer who was the co-laureate of the 2004 Stockholm Water Prize

The EEIA intends to promote interdisciplinary collaboration in advancing the field of ecological engineering in Africa and globally, and to encourage research in this innovative field. The EEIA's goal is also to establish a fully functional research and training facility, to develop various undergraduate and postgraduate curricula, and to provide international accreditation to ecological engineers. 

Snow

Evaluating on-site performance of Africa’s first ecologically engineered wetland treating a cocktail of anthropogenically impacted water from the agricultural, mining, and industrial sectors in Emalahleni, South Africa.

Forest

Phycoremediation integrated with phytoremediation in an ecologically engineered wetland to treat mine and industrial-impacted water.

Mountains

Dr Yolandi Schoeman (UFS), together with Mr Pieter Nel from North West Parks Board. Her nexus research project covers an area of more than 20 000 km² in South Africa to develop a water-climate-food-rewilding-land nexus as a novel approach to determining the planetary health status quo and boundaries of ecosystems as coupled human-natural systems.

News Archive

Institutional research culture a precondition for research capacity building and excellence
2004-11-16

A lecture presented by Dr. Andrew M. Kaniki at the University of the Free State Recognition Function for research excellence

16 November 2004
The Vice Chancellor, Prof. Frederick Fourie
Deputy Vice Chancellors, Deans
Awardees
Colleagues and ladies and gentlemen

It is a great pleasure to be here at the University of the Free State. I am particularly honoured to have been invited to present this lecture at the First Annual Recognition Function for Research Excellence to honour researchers who have excelled in their respective fields of expertise. I would like to sincerely thank the office of the Director of Research and Development (Professor Swanepol), and in particular Mr. Aldo Stroebel for facilitating the invitation to this celebration.

I would like to congratulate you (the UFS) for institutionalizing “celebration of research excellence”, which as I will argue in this lecture is one of the key characteristics of institutional research culture that supports research capacity building and sustains research excellence.

Allow me to also take this opportunity to congratulate the University of the Free State for clocking 100 years of existence.

Ahmed Bawa and Johan Mouton (2000) in their chapter entitled Research, in the book: Transformation in higher education: global pressures and local realities in South Africa (ed. N. Cloete et. al Pretoria: CHET. 296-333) have argued that “…the sources of productivity and competitiveness [in the knowledge society and global economy] are increasingly dependent on [quality] knowledge and information being applied to productivity”. The quality knowledge they refer to here is research output or research products and the research process, which (research) as defined by the [OECD] Frascati Manual (2002: 30) is:

“…creative work undertaken on a systematic basis in order to increase the stock of knowledge, including knowledge of man, culture and society, and the use of this stock of knowledge to devise new applications”

The South African Government has set itself the objective of transforming South Africa into a knowledge society that competes effectively in the global system. A knowledge society requires appropriate numbers of educated and skilled people to create quality new knowledge and to translate the knowledge in innovative ways. To this end a number of policies and strategies like the Human Resource Development [HRD] Strategy for South Africa, the National Plan for Higher Education (NPHE) and the South Africa’s Research and Development [R&D] Strategy, have highlighted human resource development and the concomitant scarce skills development as critical for wealth creation in the context of globalization. The key mission of the HRD Strategy for instance is:

To maximize the potential of the people of South Africa, through the acquisition of knowledge and skills, to work productively and competitively in order to achieve a rising quality of life for all, and to set in place an operational plan, together with the necessary institutional arrangements, to achieve this.

The R&D Strategy emphasizes that maximum effort must be exerted to train the necessary numbers of our people in all fields required for development, running and management of modern economies. Higher education institutions like the University of the Free State have a key role to play in this process, because whatever form or shape a university takes, it is expected to conduct research (quality research); teach (quality teaching – and good graduates); and contribute to the development of its community! Thus the NPHE states that the role of higher education in a knowledge-driven world is threefold:

Human resource development;

High-level skills training and

Production, acquisition and application of knowledge.

Quality research output or knowledge which as argued is critical in determining the degree of competitiveness of a country in the knowledge economy is dependent upon quality research (process). Both the process of producing quality research and its utilization cannot and does not happen in a vacuum. It requires an environment that facilitates the production of new knowledge, its utilization and renewal. It requires skilled persons that can produce new knowledge and facilitate the production of new skills for quality knowledge production. Such an environment or in essence a university must have the culture that supports research activity. Institution research culture (that is a conducive and enabling institutional research culture) is a precondition to research capacity building. Without an institutional research culture that facilitates the development and nurturing of new young researchers it is difficult, if not impossible for a university to effectively and efficiently generate new and more quality researchers. Institutional research culture is also necessary to sustain quality research and quality research output or research excellence. It facilitates the development and sustenance of the institutional and people capacities required to do research produce quality research and generally attain research excellence!

We do recognize that the patterns of information and knowledge seeking, and knowledge generation vary among field or disciplines. For example, we know that in the humanities knowledge workers often work individually, and not as collaboratively as do those of the sciences, they all however, require supportive environments – institutional research culture to achieve and sustain research excellence. An institution does not simply attain a supportive research culture, but as Patricia Clements (English Department, University of Alberta, Edmonton) in her presentation Growing a research culture argues, research culture has to be grown [and maintained]. It unifies all natural and engineering scientists; medical researchers, humanists, and social scientists.

I therefore am of the view that Institutional Research Culture is critical to research capacity building and research excellence. I therefore want to spend a few minutes looking at the characteristics of research culture. To be effective, institutional research culture has grown and sustained not only at the institutional level, but also at the faculty, school and departmental levels of any university.

What is Research Culture?

In the process of researching on institutional research culture I identified several characteristics. Many of these overlap in some way. I want to deal with some of these characteristics; some in a little more detail while others simply cursorily. In the process what we should be asking ourselves is the extent to which an institution, like the University of the Free State, and its faculties, individually and severally, is growing and or sustaining this culture.

Institutional Research Strategy: As a plan of action or guide for a course of action, the institutional research strategy must spell out research goals that a university wants to achieve. It must be a prescription of what the university needs to be done with respect to research. As a strategy it is neither an independent activity nor an end in itself, but a component part and operationalization of the university policy or mission. ( Related to this is the Establishment of Institutional research policies)

Includes and makes public the targets, e.g. achieve so many rated scientists and make sure that every year we have so many SAPSE publications. That way people keep an eye on research agendas of the university and nation.

The UFS is obviously on its way, having launched its own Research strategy (A Strategic framework for the development of research at the University of the Free Sate. August 2003). Note that this strategy refers specifically to the “Culture of research” Fig 1

A set of administrative practices to support and encourage research. Patricia Clements (English Department, University of Alberta, Edmonton) in her presentation Growing a research culture argues that that research activity and output within the her Faculty (Arts) were very low and, in spite of the numbers of staff, with no Associate Dean for Research in the Faculty as though they had accepted that research belonged to Medicine and Science and Engineering, and teaching, separated from inquiry, belonged to the Arts. With the change in the thinking about research and development of research culture, it became clear that there was a major role for research support in a faculty her size (now about 360 full time continuing academic staff). The faculty developed a support system for research and began to address the SSHRC issues.

Reduce the bureaucracy system and micromanagement of research! This however, also implies that there is capacity and policies and procedure to manage and guide research processes

Establishment of Intellectual Property regulations and assistance

Research ethics policy and safeguarding by research administration

Focused, applied and suitable nature of the delivery mode (an institution open to new methodologies for conducting research

Programmes suited both full and part-time study particularly at graduate level (Mainly at Faculty/school and department level, and depending on what’s manageable)

Hiring senior academics to engage in, teach on and supervise postgraduate students to facilitate exchange of and transfer ideas and most importantly mentorship especially in view of declining numbers of researchers in particular fields

Quality instruction and facilitation in learning about research processes

A high retention rate of students maintained by the supportive and challenging learning environment and the use of online facilities to support collaboration and in-class learning

Availability of research grants: and awareness of sourcing funds from external sources like the National Research Foundation; Water Research Commission; Medical Research Council, private philanthropies and others outside the country. For example an institution should be able to assess how much of the slice the available funds (NRF etc) its able acquire and possibly top slice from institutional budget.

Adequacy of the financial reward system to encourage university staff members to do research (General Celebration of achievement for research excellence and achievement. This ranges form Annual reports mention; celebratory dinner. At Alberta researchers were given lapels. I don’t know of any academic who do not feel a sense of achievement to get into print or recognised. Access to research facilities within and outside the institution

Provision of infrastructure to support university-based research (e.g. equipment, admin support, etc.) – but also awareness of publicly funded and available research facilities and equipment!

Internet connectivity and changes in the bandwidth of the internet to download articles

Subscription to related bodies by the library so that researcher can download articles

Facilities and resources to attend international conferences to keep one updated

Number of visiting professors/speakers targeting senior scholars and invite them to lunch to ask them to participate and to encourage their best graduate students to do so within the institution and across institutions

Research training seminars for research students including young academics

Participation of staff/students in delivering research papers to national and international conferences

Establishment of research groups to provide interaction frameworks to achieve critical mass of research-active staff

Facilitation for more research time: Targeting new scholars and giving them reduced teaching loads in their first year or two for the purpose of developing their research programs. For the purpose of helping new colleagues to see the shape of South African research support, personalizing it, and creating research community

Take research to the community and argue its necessity, and utility

And, finally celebrating excellence. We must recognize achievement - parties and public recognition for colleagues who achieve splendid things in their research.

In conclusion, I want to reemphasize that research culture has to be grown it does not simply exist in an institution. If it is grown it needs to be nourished, nurtured and sustained. An institution cannot simply leave on borrowed reputation and expect to remain research excellent. It is on this basis that instruments like the National Research Foundation rating system recognizes excellence within a given period of time and not necessarily for a life time! This it is believed encourages continued research excellence.

THANK YOU and best wishes

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept