Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 February 2023 | Story André Damons | Photo Supplied
Prof Paul Oberholster
Prof Paul Oberholster is Director of the Centre for Environmental Management at the University of the Free State (UFS) and winner of the NSTF-Water Research Commission (WRC) Award for his contribution to water resource management in South Africa in 2021.

This year has already seen severe natural disasters across the world, including devastating floods and forest fires, which serve as reminders of the planet's fragility and the importance of addressing the impacts of climate change. Nature-based solutions can play a critical role in mitigating climate change and offer a range of benefits to both people and the planet.

Prof Paul Oberholster – Director of the Centre for Environmental Management at the University of the Free State (UFS) – and his team played their part by researching nature-based solutions as an alternative to treating acid mine drainage (AMD) and domestic wastewater. Freshwater algae as a phycoremediation solution approach have the potential to help society and the environment in several ways.  

Prof Oberholster, winner of the NSTF-Water Research Commission (WRC) Award for his contribution to water resource management in South Africa in 2021, says nature-based solutions also play a vital role in realising the Kunming-Montreal Global Biodiversity Framework (GBF), which was adopted during the United Nations Biodiversity Conference (COP15) on 19 December 2022 in Montreal, Canada. The GBF sets global targets for 2030 that aim to effectively conserve and manage at least 30% of the world's lands, inland waters, coastal areas, and oceans, prioritise ecologically representative and well-connected systems of protected areas, restore at least 30% of degraded ecosystems, reduce the loss of areas of high biodiversity importance, cut global food waste in half, and significantly reduce over-consumption and waste generation.

What are nature-based solutions?

According to Prof Oberholster, nature-based solutions are approaches that utilise natural ecosystem processes, functions, and structures to address a variety of planetary health challenges, including climate change. These solutions involve protecting, restoring, regenerating, and sustainably managing natural ecosystems, such as forests, wetlands, and oceans, to enhance their ability to store carbon, regulate water flow, reinstate ecosystem services, and provide habitat for wildlife.

The significance of nature-based solutions regarding climate change adaptation is multifaceted. Firstly, natural ecosystems are essential for regulating the earth's climate, as they absorb and store carbon dioxide from the atmosphere, which helps to mitigate the effects of greenhouse gas emissions. 

Secondly, nature-based solutions can help to reduce the vulnerability of human communities to the impact of climate change, such as flooding, drought, and extreme weather events. Thirdly, nature-based solutions can provide multiple benefits beyond climate change adaptation, such as enhancing biodiversity, supporting sustainable livelihoods, and improving human health and well-being.

Prof Oberholster’s work

Algae-based treatment systems use bio-stimulation applications and natural processes to remove pollutants from water, which can be more cost-effective and produce less waste. Traditional treatment methods for AMD and domestic wastewater often rely on using chemicals or energy-intensive processes, which can be expensive and have negative environmental impacts. 

"Algae-based treatment systems can help mitigate the environmental impacts of AMD and domestic wastewater by removing pollutants such as heavy metals and reducing the acidity of the water. This can help restore the ecosystem and protect public health. Similarly, algae-based treatment systems can remove nutrients from domestic wastewater, reducing its environmental impact and preventing eutrophication, which can harm aquatic life," says Prof Oberholster.

Clean water and sanitation, forestry (plant life and agriculture), and climate change are part of the 17 Sustainable Development Goals (SDGs) making Prof Oberholster's research much more important. 


Meet a Limnologist, Paul Oberholster (NSTF-South32 Award Winner): 


Significance of nature-based solutions

According to him, there are several reasons why we should make more use of nature-based solutions. It can help reduce our carbon footprint and mitigate the impact of climate change. It can help protect the environment and promote biodiversity. By reducing waste and pollution, we can preserve natural resources and ecosystems and ensure they remain healthy and vibrant for future generations.

Dr Yolandi Schoeman , a postdoc student of Prof Oberholster, says the significance of nature-based solutions is multifaceted and includes environmental, social, and economic benefits. Nature-based solutions can play a critical role in mitigating climate change by sequestering carbon, enhancing carbon sinks, and reducing greenhouse gas emissions. By protecting and restoring natural ecosystems, we can enhance their ability to store carbon, which in turn helps to mitigate the effects of climate change.

"These solutions are also important for climate change adaptation. Nature-based solutions can also help to reduce the vulnerability of human communities to the impact of climate change, such as flooding, drought, and extreme weather events. By regenerating natural wetlands and floodplains, for example, we can help to reduce the risk of flooding, while reforestation can help to prevent soil erosion and landslides,'' says Dr Schoeman.

According to her, rewilding is another key reason why nature-based solutions are critical in the process of regenerating natural ecosystems. Through rewilding, habitat can be reinstated for a wide range of plant and animal species, lost species guilds can be restored by giving them space to thrive, population enhancement can be enabled, and key native species can be reintroduced as essential ecosystem builders. By protecting, regenerating, and restoring these ecosystems, we can help conserve biodiversity and prevent species loss, ultimately securing our own survival on earth.

UFS research initiative relating to nature-based solutions 

The UFS has a number of ongoing research initiatives and projects focused on nature-based technology solutions, including projects focused on climate adaptation in water resource management, establishing the water-climate-food-rewilding-land nexus as a planetary health ‘stock-take’ of ecosystems, reducing water usage, reinstating connections as coupled human and natural systems, enabling rewilding, and increasing water efficiency. 

The UFS is also involved in research that addresses water pollution through developing and implementing nature-based systems such as hybrid constructed wetlands, phytoremediation and phycoremediation, regenerating natural wetland systems and riparian buffer zones, bio-remediation, design of bio-intelligent systems, integrating grey and green infrastructure, and the use of big data and analytics in the design and management of nature-based solutions for water, according to Dr Schoeman. 

Ecological Engineering Institute of Africa

Prof Oberholster is leading a globally significant initiative that has recently been established at the UFS – the Ecological Engineering Institute of Africa (EEIA). The EEIA's managing members include scientists and engineers from across the world, including Egypt, Ghana, Greece, and the United States of America (USA). 

Prof William Mitsch, an original co-founder of the EEIA, is also a managing member. Prof Mitsch, regarded as the best wetland scientist in the world, is also known for his positions as director of the Everglades Wetland Research Park, United States National Ramsar committee chair (to name but a few), and is an ecological engineer who was the co-laureate of the 2004 Stockholm Water Prize

The EEIA intends to promote interdisciplinary collaboration in advancing the field of ecological engineering in Africa and globally, and to encourage research in this innovative field. The EEIA's goal is also to establish a fully functional research and training facility, to develop various undergraduate and postgraduate curricula, and to provide international accreditation to ecological engineers. 

Snow

Evaluating on-site performance of Africa’s first ecologically engineered wetland treating a cocktail of anthropogenically impacted water from the agricultural, mining, and industrial sectors in Emalahleni, South Africa.

Forest

Phycoremediation integrated with phytoremediation in an ecologically engineered wetland to treat mine and industrial-impacted water.

Mountains

Dr Yolandi Schoeman (UFS), together with Mr Pieter Nel from North West Parks Board. Her nexus research project covers an area of more than 20 000 km² in South Africa to develop a water-climate-food-rewilding-land nexus as a novel approach to determining the planetary health status quo and boundaries of ecosystems as coupled human-natural systems.

News Archive

Postgraduates’ new Kovsies home
2013-05-10

 
Some of the guests attending the launch, included from left: Prof Driekie Hay, Vice-Rector: Academic, Dr Henriette van den Berg, Director: Postgraduate School and Prof Corli Witthuhn, Vice-Rector: Research.
10 May 2013
Photo: Johan Roux

Postgraduate students and their academic 'parents' at the University of the Free State (UFS) now have a dedicated physical, emotional and electronic space to provide for their specialised needs in order to further promote research excellence at the UFS.

The university's Postgraduate School was launched in May 2011, but ventured further in the quest to fulfil and expand its mandate with new initiatives. These different aspects of the school were launched on Wednesday 8 May 2013 in the CR Swart Auditorium on the Bloemfontein Campus. The postgraduate strategy, postgraduate prospectus, the website and the headquarters of the Postgraduate School in the Johannes Brill Building were all unveiled and launched.

Prof Driekie Hay, Vice-Rector: Academic, who was a major driving force behind the formation of the Postgraduate School, during her address at the opening emphasised the multifaceted and unique relationships which often exist between students and supervisors.

Prof Hay, who has a distinguished academic background in postgraduate teaching, made plain her expectations for the Postgraduate School. She said it aims to "create an intellectual space for postgraduate students and supervisors" in order to produce world-class intellectuals at this university.

She said the school will empower both students who often don't know what to expect from supervision, as well as supervisors who often lack supervision skills. Through this it will be possible to create healthy, productive relationships between the distinct pairs in often misunderstood, unbalanced and intricate interactions.

Dr Henriette van den Berg, Director of the Postgraduate School, introduced the strategic plan of the school and emphasised the great strides that have already been made and what still needs to be done at the UFS in terms of postgraduate teaching. According to her, the Postgraduate School aims towards "holistic development of postgraduate students with transferable skills," through a multi-level and institution-wide approach at the university.

"Our aim is to develop a one-step service for postgraduate students, involving all the different stakeholders," she said.

The new Postgraduate School website was also showcased during the event. Reachable through a number of avenues on the main website, the site offers a digital version of the Johannes Brill Building. Brimming with features catering specifically for local, international, current and prospective students, the website provides crucial information.

The Johannes Brill Building's refurbished interior, with staff offices, seminar rooms and social spaces, were also showcased to UFS' staff and students. The initial phase of the Supervisors' Wall of Fame was also unveiled. According to Dr van den Berg , the wall will after completion bestow much-deserved praise on a hand-picked group of 60 supervisors who have respectively been responsible for more than 300 and more than 500 successful PhD and master's candidates over the past decade.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept