Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 February 2023 | Story André Damons | Photo Supplied
Prof Paul Oberholster
Prof Paul Oberholster is Director of the Centre for Environmental Management at the University of the Free State (UFS) and winner of the NSTF-Water Research Commission (WRC) Award for his contribution to water resource management in South Africa in 2021.

This year has already seen severe natural disasters across the world, including devastating floods and forest fires, which serve as reminders of the planet's fragility and the importance of addressing the impacts of climate change. Nature-based solutions can play a critical role in mitigating climate change and offer a range of benefits to both people and the planet.

Prof Paul Oberholster – Director of the Centre for Environmental Management at the University of the Free State (UFS) – and his team played their part by researching nature-based solutions as an alternative to treating acid mine drainage (AMD) and domestic wastewater. Freshwater algae as a phycoremediation solution approach have the potential to help society and the environment in several ways.  

Prof Oberholster, winner of the NSTF-Water Research Commission (WRC) Award for his contribution to water resource management in South Africa in 2021, says nature-based solutions also play a vital role in realising the Kunming-Montreal Global Biodiversity Framework (GBF), which was adopted during the United Nations Biodiversity Conference (COP15) on 19 December 2022 in Montreal, Canada. The GBF sets global targets for 2030 that aim to effectively conserve and manage at least 30% of the world's lands, inland waters, coastal areas, and oceans, prioritise ecologically representative and well-connected systems of protected areas, restore at least 30% of degraded ecosystems, reduce the loss of areas of high biodiversity importance, cut global food waste in half, and significantly reduce over-consumption and waste generation.

What are nature-based solutions?

According to Prof Oberholster, nature-based solutions are approaches that utilise natural ecosystem processes, functions, and structures to address a variety of planetary health challenges, including climate change. These solutions involve protecting, restoring, regenerating, and sustainably managing natural ecosystems, such as forests, wetlands, and oceans, to enhance their ability to store carbon, regulate water flow, reinstate ecosystem services, and provide habitat for wildlife.

The significance of nature-based solutions regarding climate change adaptation is multifaceted. Firstly, natural ecosystems are essential for regulating the earth's climate, as they absorb and store carbon dioxide from the atmosphere, which helps to mitigate the effects of greenhouse gas emissions. 

Secondly, nature-based solutions can help to reduce the vulnerability of human communities to the impact of climate change, such as flooding, drought, and extreme weather events. Thirdly, nature-based solutions can provide multiple benefits beyond climate change adaptation, such as enhancing biodiversity, supporting sustainable livelihoods, and improving human health and well-being.

Prof Oberholster’s work

Algae-based treatment systems use bio-stimulation applications and natural processes to remove pollutants from water, which can be more cost-effective and produce less waste. Traditional treatment methods for AMD and domestic wastewater often rely on using chemicals or energy-intensive processes, which can be expensive and have negative environmental impacts. 

"Algae-based treatment systems can help mitigate the environmental impacts of AMD and domestic wastewater by removing pollutants such as heavy metals and reducing the acidity of the water. This can help restore the ecosystem and protect public health. Similarly, algae-based treatment systems can remove nutrients from domestic wastewater, reducing its environmental impact and preventing eutrophication, which can harm aquatic life," says Prof Oberholster.

Clean water and sanitation, forestry (plant life and agriculture), and climate change are part of the 17 Sustainable Development Goals (SDGs) making Prof Oberholster's research much more important. 


Meet a Limnologist, Paul Oberholster (NSTF-South32 Award Winner): 


Significance of nature-based solutions

According to him, there are several reasons why we should make more use of nature-based solutions. It can help reduce our carbon footprint and mitigate the impact of climate change. It can help protect the environment and promote biodiversity. By reducing waste and pollution, we can preserve natural resources and ecosystems and ensure they remain healthy and vibrant for future generations.

Dr Yolandi Schoeman , a postdoc student of Prof Oberholster, says the significance of nature-based solutions is multifaceted and includes environmental, social, and economic benefits. Nature-based solutions can play a critical role in mitigating climate change by sequestering carbon, enhancing carbon sinks, and reducing greenhouse gas emissions. By protecting and restoring natural ecosystems, we can enhance their ability to store carbon, which in turn helps to mitigate the effects of climate change.

"These solutions are also important for climate change adaptation. Nature-based solutions can also help to reduce the vulnerability of human communities to the impact of climate change, such as flooding, drought, and extreme weather events. By regenerating natural wetlands and floodplains, for example, we can help to reduce the risk of flooding, while reforestation can help to prevent soil erosion and landslides,'' says Dr Schoeman.

According to her, rewilding is another key reason why nature-based solutions are critical in the process of regenerating natural ecosystems. Through rewilding, habitat can be reinstated for a wide range of plant and animal species, lost species guilds can be restored by giving them space to thrive, population enhancement can be enabled, and key native species can be reintroduced as essential ecosystem builders. By protecting, regenerating, and restoring these ecosystems, we can help conserve biodiversity and prevent species loss, ultimately securing our own survival on earth.

UFS research initiative relating to nature-based solutions 

The UFS has a number of ongoing research initiatives and projects focused on nature-based technology solutions, including projects focused on climate adaptation in water resource management, establishing the water-climate-food-rewilding-land nexus as a planetary health ‘stock-take’ of ecosystems, reducing water usage, reinstating connections as coupled human and natural systems, enabling rewilding, and increasing water efficiency. 

The UFS is also involved in research that addresses water pollution through developing and implementing nature-based systems such as hybrid constructed wetlands, phytoremediation and phycoremediation, regenerating natural wetland systems and riparian buffer zones, bio-remediation, design of bio-intelligent systems, integrating grey and green infrastructure, and the use of big data and analytics in the design and management of nature-based solutions for water, according to Dr Schoeman. 

Ecological Engineering Institute of Africa

Prof Oberholster is leading a globally significant initiative that has recently been established at the UFS – the Ecological Engineering Institute of Africa (EEIA). The EEIA's managing members include scientists and engineers from across the world, including Egypt, Ghana, Greece, and the United States of America (USA). 

Prof William Mitsch, an original co-founder of the EEIA, is also a managing member. Prof Mitsch, regarded as the best wetland scientist in the world, is also known for his positions as director of the Everglades Wetland Research Park, United States National Ramsar committee chair (to name but a few), and is an ecological engineer who was the co-laureate of the 2004 Stockholm Water Prize

The EEIA intends to promote interdisciplinary collaboration in advancing the field of ecological engineering in Africa and globally, and to encourage research in this innovative field. The EEIA's goal is also to establish a fully functional research and training facility, to develop various undergraduate and postgraduate curricula, and to provide international accreditation to ecological engineers. 

Snow

Evaluating on-site performance of Africa’s first ecologically engineered wetland treating a cocktail of anthropogenically impacted water from the agricultural, mining, and industrial sectors in Emalahleni, South Africa.

Forest

Phycoremediation integrated with phytoremediation in an ecologically engineered wetland to treat mine and industrial-impacted water.

Mountains

Dr Yolandi Schoeman (UFS), together with Mr Pieter Nel from North West Parks Board. Her nexus research project covers an area of more than 20 000 km² in South Africa to develop a water-climate-food-rewilding-land nexus as a novel approach to determining the planetary health status quo and boundaries of ecosystems as coupled human-natural systems.

News Archive

Food insecurity at university campuses under the spotlight
2015-08-20

 

"Food insecurity is   becoming an increasing problem at South African universities, much to the surprise of university managers." - Dr Louise van den Bergh, senior lecturer and researcher at our department of Nutrition and Dietetics

More than 70% of early university dropouts in the country were forced to abandon their tertiary studies because of food insecurity and financial need.

This was one of the conclusions drawn during the first higher education colloquium on food insecurity. The colloquium was hosted on by the University of the Free State (UFS) on the Bloemfontein Campus on 14 August 2015, where researchers from universities across the country shared their research about food insecurity on university campuses.

In South Africa, university campuses are not usually associated with food insecurity but, over the last few years, tertiary education has become more accessible to an increasing number of first-generation students and students from low-income households.

Some of the research indicated that students from lower-income households are often lacking financially, even with bursaries. The research has also shown that students frequently have to use part of their bursary money to support their families. This results in students not having enough money to buy food, which means they will do almost anything to get food.

A study by the UFS Department of Nutrition and Dietetics found that as many as 60% of our students are food insecure, and experience hunger frequently. This study was the first of its kind in South Africa. In 2011, the UFS launched the No Student Hungry Bursary Programme to provide food bursaries to food-insecure students.

At the opening of the colloquium, Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS, said by helping students with a basic commodity like food, you give them much more than food; you give them humanity and dignity.

Dr Louise van den Bergh, senior lecturer and researcher in the UFS Department of Nutrition and Dietetics, explains that the problem is considerably more complex than just providing for students financially.

Dr Van den Bergh says that funders need to reassess bursaries, keeping issues such as food insecurity in mind, and not focusing just on tuition.

Research presented at the colloquium: (PDF's van die slides)

UFS Food environment and nutritional practices

UFS Skeleton in the University closet

UKZN Achieving food security

UKZN Food security and academic performance

UKZN Hunger for knowledge

UKZN Perceptions of food insecurity complexities

UW Food acquisition struggles

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept