Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2023 | Story Valentino Ndaba | Photo UFS Photo Archive
The UFS Protest Protocol offers the university community safety guidelines during protests, including dos and don’ts for staff and students who are not demonstrating; acceptable and unacceptable behaviour during protests, and how to handle protests in accordance with standard operating procedures

The University of the Free State (UFS) recognises the right of students and staff members to peacefully assemble, picket, and protest in a way that does not interfere with the rights of other members of the university community. At the same time, the safety of all UFS staff and students is one of our top priorities.

The UFS Protest Protocol offers the university community safety guidelines during protests, including dos and don’ts for staff and students who are not demonstrating; acceptable and unacceptable behaviour during protests, and how to handle protests in accordance with standard operating procedures.

As a university, we continuously strive to create an inclusive environment where opposing views are accommodated, and the constitutional right to protest is respected. According to the UFS’s Vision 130 strategy, one of the key principles that drive the institution is social justice: “The university recognises that diversity goes together with a commitment to inclusivity, equity, and social justice. We therefore also commit to creating a culture of care and a vibrant space for, and acceptance of, constructive and critical engagement; where a diversity of often contested ideas and perspectives is not just tolerated, but also fostered through discussion and subsequent implementation.”

What should one do if a protest occurs?

1. Communicate: The university must be informed if it is to respond appropriately to protest action. If you are aware of ongoing or impending protest action, immediately inform the relevant 24/7 Protection Services operational centre.

2. Be informed: In order to respond appropriately to protest action (for your own protection and the protection of others), you need to know about impending or ongoing protests and stay informed on how it unfolds, via official UFS communication platforms and ConnectYard. The latter provides as-it-happens crisis alert notifications via WhatsApp.

3. Keep away: If at all possible, keep away from the area of the protest action. Try to keep others for whom you are responsible away as well.

4. Help others: If someone appears to be in danger or distress, intervene only if you are sure that it is safe for you to do so, and proceed calmly, without provoking protesters. Seek treatment for injuries. Should you or someone else suffer injuries of any kind during protest action, seek treatment from emergency services or Kovsie Health. Contact the Protection Services operational centres for any medical emergencies, so that they can activate the ambulance services according to available protocols.

5. Report: Report all incidents and damages to Protection Services at the numbers provided. It is important that non-protesting staff and students submit statements to the UFS investigating officers for the internal disciplinary process, to prevent similar occurrences in future. Be specific when providing a statement, to enable the investigating team to identify those involved in violent disruptions. Culprits cannot be brought to book if no evidence is available to link them to specific incidents. All reasonable steps will be taken to protect non-protesting staff and students testifying in disciplinary proceedings.

For advice on what to do and what not to do, read the UFS Protest Guidelines booklet. You can also watch the video below for more information:

 

Bloemfontein Campus
Protection Services: +27 51 401 2911 | +27 51 401 2634 | 0800 204 682
Ambulance: +27 80 005 1051 | 10177
Social worker: +27 73 182 3048
Kovsie Health: +27 51 401 2603

Qwaqwa Campus     
Protection Services: +27 58 718 5460 | +27 58 718 5175 | +27 58 718 5360
Ambulance: 10177
Social Worker: +27 58 718 5090 | +27 58 718 5091
Kovsie Health:   +27 58 718 5210                          

South Campus
Protection Services: +27 51 505 1217
Ambulance: +27 80 005 1051 | 10177
Social worker: +27 73 182 3048
Kovsie Health: +27 51 401 2603

 

 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept