Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2023 | Story Kekeletso Takang | Photo Kekeletso Takang
Leading in Open Distance and E-Learning is Dr Bawinile Mthanti (left), and Programme Director for Childhood Education; Dr Zukiswa Nhase (right).

If you want to make a change, be you. These are the words of Dr Zukiswa Nhase, Programme Director for the Department of Childhood Education and Lecturer in the Faculty of Education. She believes that to make an impact, a leader needs to demonstrate care.

As of 2023, the Department of Childhood Education (DCE) – Foundation Phase – relocated to the South Campus, widening the offering of the campus. The Grade R Diploma in Teaching and the Advanced Certificate in Teaching are flagship undergraduate programmes offered by the Faculty of Education.

 Grade R Diploma bridging the gap

The Grade R Diploma in Teaching, an initiative of the Department of Higher Education and Training (DHET), is geared towards equipping and supporting childhood development teachers. 

Catering for the Free State context, the qualification accommodates English, Afrikaans, Sesotho, and isiZulu speakers. Teachers are taught by experienced specialists in the field who understand their daily challenges. This is according to Dr Nhase. The DCE has much to offer, being a leader in the country in offering the Grade R diploma, with universities across South Africa benchmarking from the UFS.  

The primary purpose of this qualification is to empower teachers with the appropriate skills and knowledge to optimise any teaching-learning situation. Informed by research, the Grade R Diploma in Teaching has been developed to meet specific national skills needs that exist in South Africa’s education system, with specific reference to the Grade R distance education model which provides a customised and practical opportunity for existing teachers to upgrade their knowledge and level of professionalism without having to attend full-time contact classes. 

Early Childhood Development (ECD) in South Africa refers to an all-inclusive approach to programmes and policies for children from birth to seven years of age. Formerly with the Department of Social Development, ECD now reports to the Department of Basic Education. This move was to bridge the gap that existed and to unify the teaching professions.

Advanced Certificate in Teaching

Another offering on the South Campus under the stewardship of Dr Bawinile Mthanti, Head of Open Distance and E-Learning (ODEL) in the Faculty of Education, is the Advanced Certificate in Teaching. Previously managed by the UFS and HEPSA, ACT is now solely managed by the UFS.  Delivered in two modes, it is aimed at upgrading the qualifications of teachers who are currently employed without adequate training. This programme is an excellent opportunity to provide specialist education to teachers who need to strengthen their subject-specialisation knowledge base. 

The Advanced Certificate in Teaching is delivered in the online mode (100% online with no face-to-face contact with the lecturer) and the blended distance-learning mode (some online activity and face-to-face contact with the lecturer). Through this programme, students advance closer to a Bachelor of Education. 

With Gauteng province leading the way with the number of registered students, the ACT has had great successes and will only advance when it is offered solely in online mode from 2024. “We are currently in the process of acquiring approval in the UFS structures to offer ACT solely online from 2024,” says Dr Mthanti.  

For more information on the programmes and other Faculty of Education offerings, visit our website


News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept