Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2023 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS unveiled new spectrograph
Assisting Prof Richard Gray with the installation of the spectrograph and the polarimeter were the Electronics and Instrumentation departments at both the UFS and the ASU. Left from the spectrograph, are from the left, front: Innes Basson, Head of the Department of Electronics and Instrumentation, Prof Pieter Meintjes, Senior Professor in the Department of Physics, Mark Jackson, Department of Electronics and Instrumentation, Hélène Szegedi, Lecturer in the Department of Physics, and Prof Richard Gray. At the right, from the spectrograph, front, are Natali Matchelt, master’s student, Izak van der Westhuizen, Lecturer in the Department of Physics; Barend Crous, Department of Electronics and Instrumentation; middle: Wian Smit, master’s student, Joleen Barnard, master’s student; back: Kobus Krüger, Department of Electronics and Instrumentation, Henri Roodt, Department of Electronics and Instrumentation; and Dr Hendrik van Heerden, Department of Physics.

The University of the Free State (UFS) is gearing up to be a leading academic institution in astronomical research. The institution successfully mounted a spectrograph with a polarimeter to the Boyden Observatory 1,5-m telescope that will provide scientists with visual access to both the Northern and Southern Hemispheres. 

The instrument, which can be accessed from Boyden, an astronomical research observatory and science education centre a few kilometres outside Bloemfontein, will allow researchers such as the Astrophysics Group at the UFS to do simultaneous polarimetry and spectroscopy of astronomical sources. This is vital for the research they are working on.

Mounting the spectrograph to the telescope and installing the polarimeter completed the upgrade of the 1,5-m telescope and is a leap forward for the astrophysics group at the UFS. The upgraded telescope with the spectropolarimeter, with a valued cost of R1.5 million, will also provide unique opportunities for collaborative research between the Astrophysics Groups at the UFS and researchers from the Appalachian State University (ASU). This adds greatly to the astrophysics research capacity at the university.
 
Prof Richard Gray, who 2019 started with the development of the astronomical spectrograph for the UFS Department of Physics, is a world-renowned expert in stellar spectroscopy, from the Department of Physics and Astronomy at ASU in North Carolina in the US. He was mainly responsible for the development and building of the instrument. 

Prof Pieter Meintjes, Senior Professor from the UFS Department of Physics, describes the moment that installation was completed as a feeling of enormous relief. “It took many hours of hard work, planning and testing to marry the 90-year 1,5-m telescope with the new sophisticated instrument,” he says. 

Adding value to graduate programme

Besides the development and installation of the spectrograph, Prof Gray also designed and built a polarimeter which can be integrated with the spectrograph. When placed inside the spectrograph, this piece of equipment transforms the spectrograph into a spectropolarimeter, giving it additional functionality. “This allows us, for example, to detect and analyse polarised light. It enables us to study the effect of magnetic fields in astronomical sources which introduce various polarisation signatures that can be detected with the polarimeter,” explains Prof Gray.

“I am fascinated by the polarimetric capabilities that we never had before. It is a great step forward,” remarks Prof Meintjes. 

“The Department of Electronics and Instrumentation at the UFS played an enormous role in the building of several components of the instrument that Prof Gray designed, as well as getting the 1.5-m telescope research ready so that the completed instrument could be mounted to the telescope”, says Prof Meintjes

He envisages that the research instrument will be ready for research purposes by March this year. Up till then researchers, graduates, and third-year students will have the opportunity to spend time on the spectrograph to familiarise themselves with it.

polarimeter
Prof Richard Gray posing with the polarimeter. With him is Prof Pieter Meintjes. (Photo: Leonie Bolleurs)


“Once installation is finalised, the UFS will be the only academic institution in South Africa with access to a 1.5-m telescope paired with a spectrograph. This gives us an edge in terms of our astrophysics programme and the training we provide our students. It also adds so much value to our graduate programme,” he says.

New instrument provides much flexibility

The spectrograph offers Prof Meintjes many possibilities for his research, and he is eager to put the instrument to use. To study binary systems as well as the jets of Active Galactic Nuclei (AGN), you need a spectrograph, preferably with polarimetric capabilities. It can also be applied to finding elements at the surface levels of stars so that their chemical composition can be determined.

“In the past, we needed to send our researchers to Sutherland and they were never guaranteed clear skies. Having this facility gives us so much flexibility,” he says.

 

Tsebo Matsoso and Siphephelo Ndlovu

Prof Brian van Soelen from the Department of Physics will be a key user of the spectrograph for his research. He is also playing an important role in terms of postgraduate training and research where the spectrograph is applied. 

Photo: Mart-Mari Duvenhage

  

 


The polarimeter converts the spectrograph to a spectropolarimeter. This instrument, which is mounted on a telescope (in the case of the UFS, it is mounted on the Boyden 1,5-m telescope) enables the user to detect whether radiation from  astronomical objects are polarised and to analyse the level of polarisation of the  light. Scientists can then, for instance, study the effect of magnetic fields in astronomical sources, which introduce various polarisation signatures (typically with a characteristic  level of polarisation).

News Archive

Boyden Observatory turns 120
2009-05-13

 

At the celebration of the 120th year of existence of the UFS's Boyden Observatory are, from the left: Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, Prof. Driekie Hay, Vice-Rector: Academic Planning at the UFS, Mr Ian Heyns from AngloGold Ashanti and his wife, Cheryl, and Prof. François Retief, former rector of the UFS and patron of the Friends of Boyden.
Photo: Hannes Pieterse

The Boyden Observatory, one of the oldest observatories in the Southern Hemisphere and a prominent beacon in Bloemfontein, recently celebrated its 120th year of existence.

This milestone was celebrated by staff, students, other dignitaries of the University of the Free State (UFS) and special guests at the observatory last week.

“The observatory provides the Free State with a unique scientific, educational and tourist facility. No other city in South Africa, and few in the world, has a public observatory with telescopes the size and quality of those at Boyden,” said Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the UFS.

The observatory, boasting the third-largest optical telescope in South Africa, has a long and illustrious history. It was established on a temporary site on Mount Harvard near the small town of Chosica, Peru in 1889. Later it was moved to Arequipa in Peru where important astronomical observations were made from 1891 to 1926. “However, due to unstable weather patterns and observing conditions, it was decided to move the Boyden Station to another site somewhere else in the Southern Hemisphere, maybe South Africa,” said Prof. Van Schalkwyk.

South Africa's excellent climatic conditions were fairly well known and in 1927 the instruments were shipped and the Boyden Station was set up next to Maselspoort near Bloemfontein. Observations began in September 1927 and in 1933 the new site was officially completed, including the 60 inch (1.5 m) telescope, which was then the largest optical telescope in the Southern Hemisphere. This telescope was recently refurbished to a modern research instrument.

The observatory has various other telescopes and one of them, the 13" refractor telescope, which was sent to Arequipa in 1891 and later to Bloemfontein, is still in an excellent condition. Another important telescope is the Watcher Robotic Telescope of the University College Dublin, which conducts many successful observations of gamma ray bursts.

“In the first few decades of the twentieth century, the Boyden Observatory contributed considerably to our understanding of the secrets of the universe at large. The period luminosity relationship of the Cepheid variable stars was, for example, discovered from observations obtained at Boyden. This relationship is one of the cornerstones of modern astrophysics. It is currently used to make estimates of the size and age of the universe from observations of the Hubble Space Telescope,” said Prof. Van Schalkwyk.

“The Boyden Observatory contributed to the university’s astrophysics research group being able to produce the first M.Sc. degrees associated with the National Space Science Programme (NASSAP) in the country and the Boyden Science Centre plays an important role in science and technology awareness of learners, teachers and the general public,” said Prof. Van Schalkwyk.

The Boyden Science Centre has also formed strong relationships with various institutions, including the South African Agency for the Advancement of Science and Technology (SAASTA) and the Department of Science and Technology. The centre has already conducted many different projects for the Department of Science and Technology, including National Science Week projects, as well as National Astronomy Month projects. It also serves as one of the hosts of SAASTA’s annual Astronomy Quiz.

Media Release:
Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept