Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2023 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS unveiled new spectrograph
Assisting Prof Richard Gray with the installation of the spectrograph and the polarimeter were the Electronics and Instrumentation departments at both the UFS and the ASU. Left from the spectrograph, are from the left, front: Innes Basson, Head of the Department of Electronics and Instrumentation, Prof Pieter Meintjes, Senior Professor in the Department of Physics, Mark Jackson, Department of Electronics and Instrumentation, Hélène Szegedi, Lecturer in the Department of Physics, and Prof Richard Gray. At the right, from the spectrograph, front, are Natali Matchelt, master’s student, Izak van der Westhuizen, Lecturer in the Department of Physics; Barend Crous, Department of Electronics and Instrumentation; middle: Wian Smit, master’s student, Joleen Barnard, master’s student; back: Kobus Krüger, Department of Electronics and Instrumentation, Henri Roodt, Department of Electronics and Instrumentation; and Dr Hendrik van Heerden, Department of Physics.

The University of the Free State (UFS) is gearing up to be a leading academic institution in astronomical research. The institution successfully mounted a spectrograph with a polarimeter to the Boyden Observatory 1,5-m telescope that will provide scientists with visual access to both the Northern and Southern Hemispheres. 

The instrument, which can be accessed from Boyden, an astronomical research observatory and science education centre a few kilometres outside Bloemfontein, will allow researchers such as the Astrophysics Group at the UFS to do simultaneous polarimetry and spectroscopy of astronomical sources. This is vital for the research they are working on.

Mounting the spectrograph to the telescope and installing the polarimeter completed the upgrade of the 1,5-m telescope and is a leap forward for the astrophysics group at the UFS. The upgraded telescope with the spectropolarimeter, with a valued cost of R1.5 million, will also provide unique opportunities for collaborative research between the Astrophysics Groups at the UFS and researchers from the Appalachian State University (ASU). This adds greatly to the astrophysics research capacity at the university.
 
Prof Richard Gray, who 2019 started with the development of the astronomical spectrograph for the UFS Department of Physics, is a world-renowned expert in stellar spectroscopy, from the Department of Physics and Astronomy at ASU in North Carolina in the US. He was mainly responsible for the development and building of the instrument. 

Prof Pieter Meintjes, Senior Professor from the UFS Department of Physics, describes the moment that installation was completed as a feeling of enormous relief. “It took many hours of hard work, planning and testing to marry the 90-year 1,5-m telescope with the new sophisticated instrument,” he says. 

Adding value to graduate programme

Besides the development and installation of the spectrograph, Prof Gray also designed and built a polarimeter which can be integrated with the spectrograph. When placed inside the spectrograph, this piece of equipment transforms the spectrograph into a spectropolarimeter, giving it additional functionality. “This allows us, for example, to detect and analyse polarised light. It enables us to study the effect of magnetic fields in astronomical sources which introduce various polarisation signatures that can be detected with the polarimeter,” explains Prof Gray.

“I am fascinated by the polarimetric capabilities that we never had before. It is a great step forward,” remarks Prof Meintjes. 

“The Department of Electronics and Instrumentation at the UFS played an enormous role in the building of several components of the instrument that Prof Gray designed, as well as getting the 1.5-m telescope research ready so that the completed instrument could be mounted to the telescope”, says Prof Meintjes

He envisages that the research instrument will be ready for research purposes by March this year. Up till then researchers, graduates, and third-year students will have the opportunity to spend time on the spectrograph to familiarise themselves with it.

polarimeter
Prof Richard Gray posing with the polarimeter. With him is Prof Pieter Meintjes. (Photo: Leonie Bolleurs)


“Once installation is finalised, the UFS will be the only academic institution in South Africa with access to a 1.5-m telescope paired with a spectrograph. This gives us an edge in terms of our astrophysics programme and the training we provide our students. It also adds so much value to our graduate programme,” he says.

New instrument provides much flexibility

The spectrograph offers Prof Meintjes many possibilities for his research, and he is eager to put the instrument to use. To study binary systems as well as the jets of Active Galactic Nuclei (AGN), you need a spectrograph, preferably with polarimetric capabilities. It can also be applied to finding elements at the surface levels of stars so that their chemical composition can be determined.

“In the past, we needed to send our researchers to Sutherland and they were never guaranteed clear skies. Having this facility gives us so much flexibility,” he says.

 

Tsebo Matsoso and Siphephelo Ndlovu

Prof Brian van Soelen from the Department of Physics will be a key user of the spectrograph for his research. He is also playing an important role in terms of postgraduate training and research where the spectrograph is applied. 

Photo: Mart-Mari Duvenhage

  

 


The polarimeter converts the spectrograph to a spectropolarimeter. This instrument, which is mounted on a telescope (in the case of the UFS, it is mounted on the Boyden 1,5-m telescope) enables the user to detect whether radiation from  astronomical objects are polarised and to analyse the level of polarisation of the  light. Scientists can then, for instance, study the effect of magnetic fields in astronomical sources, which introduce various polarisation signatures (typically with a characteristic  level of polarisation).

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept