Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2023 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS unveiled new spectrograph
Assisting Prof Richard Gray with the installation of the spectrograph and the polarimeter were the Electronics and Instrumentation departments at both the UFS and the ASU. Left from the spectrograph, are from the left, front: Innes Basson, Head of the Department of Electronics and Instrumentation, Prof Pieter Meintjes, Senior Professor in the Department of Physics, Mark Jackson, Department of Electronics and Instrumentation, Hélène Szegedi, Lecturer in the Department of Physics, and Prof Richard Gray. At the right, from the spectrograph, front, are Natali Matchelt, master’s student, Izak van der Westhuizen, Lecturer in the Department of Physics; Barend Crous, Department of Electronics and Instrumentation; middle: Wian Smit, master’s student, Joleen Barnard, master’s student; back: Kobus Krüger, Department of Electronics and Instrumentation, Henri Roodt, Department of Electronics and Instrumentation; and Dr Hendrik van Heerden, Department of Physics.

The University of the Free State (UFS) is gearing up to be a leading academic institution in astronomical research. The institution successfully mounted a spectrograph with a polarimeter to the Boyden Observatory 1,5-m telescope that will provide scientists with visual access to both the Northern and Southern Hemispheres. 

The instrument, which can be accessed from Boyden, an astronomical research observatory and science education centre a few kilometres outside Bloemfontein, will allow researchers such as the Astrophysics Group at the UFS to do simultaneous polarimetry and spectroscopy of astronomical sources. This is vital for the research they are working on.

Mounting the spectrograph to the telescope and installing the polarimeter completed the upgrade of the 1,5-m telescope and is a leap forward for the astrophysics group at the UFS. The upgraded telescope with the spectropolarimeter, with a valued cost of R1.5 million, will also provide unique opportunities for collaborative research between the Astrophysics Groups at the UFS and researchers from the Appalachian State University (ASU). This adds greatly to the astrophysics research capacity at the university.
 
Prof Richard Gray, who 2019 started with the development of the astronomical spectrograph for the UFS Department of Physics, is a world-renowned expert in stellar spectroscopy, from the Department of Physics and Astronomy at ASU in North Carolina in the US. He was mainly responsible for the development and building of the instrument. 

Prof Pieter Meintjes, Senior Professor from the UFS Department of Physics, describes the moment that installation was completed as a feeling of enormous relief. “It took many hours of hard work, planning and testing to marry the 90-year 1,5-m telescope with the new sophisticated instrument,” he says. 

Adding value to graduate programme

Besides the development and installation of the spectrograph, Prof Gray also designed and built a polarimeter which can be integrated with the spectrograph. When placed inside the spectrograph, this piece of equipment transforms the spectrograph into a spectropolarimeter, giving it additional functionality. “This allows us, for example, to detect and analyse polarised light. It enables us to study the effect of magnetic fields in astronomical sources which introduce various polarisation signatures that can be detected with the polarimeter,” explains Prof Gray.

“I am fascinated by the polarimetric capabilities that we never had before. It is a great step forward,” remarks Prof Meintjes. 

“The Department of Electronics and Instrumentation at the UFS played an enormous role in the building of several components of the instrument that Prof Gray designed, as well as getting the 1.5-m telescope research ready so that the completed instrument could be mounted to the telescope”, says Prof Meintjes

He envisages that the research instrument will be ready for research purposes by March this year. Up till then researchers, graduates, and third-year students will have the opportunity to spend time on the spectrograph to familiarise themselves with it.

polarimeter
Prof Richard Gray posing with the polarimeter. With him is Prof Pieter Meintjes. (Photo: Leonie Bolleurs)


“Once installation is finalised, the UFS will be the only academic institution in South Africa with access to a 1.5-m telescope paired with a spectrograph. This gives us an edge in terms of our astrophysics programme and the training we provide our students. It also adds so much value to our graduate programme,” he says.

New instrument provides much flexibility

The spectrograph offers Prof Meintjes many possibilities for his research, and he is eager to put the instrument to use. To study binary systems as well as the jets of Active Galactic Nuclei (AGN), you need a spectrograph, preferably with polarimetric capabilities. It can also be applied to finding elements at the surface levels of stars so that their chemical composition can be determined.

“In the past, we needed to send our researchers to Sutherland and they were never guaranteed clear skies. Having this facility gives us so much flexibility,” he says.

 

Tsebo Matsoso and Siphephelo Ndlovu

Prof Brian van Soelen from the Department of Physics will be a key user of the spectrograph for his research. He is also playing an important role in terms of postgraduate training and research where the spectrograph is applied. 

Photo: Mart-Mari Duvenhage

  

 


The polarimeter converts the spectrograph to a spectropolarimeter. This instrument, which is mounted on a telescope (in the case of the UFS, it is mounted on the Boyden 1,5-m telescope) enables the user to detect whether radiation from  astronomical objects are polarised and to analyse the level of polarisation of the  light. Scientists can then, for instance, study the effect of magnetic fields in astronomical sources, which introduce various polarisation signatures (typically with a characteristic  level of polarisation).

News Archive

Plant-strengthening agent enhances natural ability of plants to survive
2015-07-27

Drought, diseases, and fungi. These are factors that farmers have no control over, and they often have to watch despondently as their crops are damaged. In addition, the practice of breeding plants in special and strictly-controlled conditions, has resulted in crops losing the chemical ability to protect themselves in nature.

Researchers in the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS) have developed an organic agent that restores this chemical imbalance in plants. It enables the plant to build its own resistance against mild stress factors, and thus ensures increased growth and yield by the plant.

ComCat®, a plant-strengthening agent, is the result of extensive research by the German company, Agraforum AG, together with the UFS. Commercialisation was initially limited to Europe, while research was done at the UFS.

“Plants have become weak because they were grown specially and in isolation. They can’t protect themselves any longer,” says Dr Elmarie van der Watt from the department.

Dr Van der Watt says that, in nature, plants communicate by means of natural chemicals as part of their resistance mechanisms towards various stress conditions. These chemicals enable them to protect themselves against stress conditions, such as diseases and fungi (biotic conditions) or wind and droughts (abiotic conditions).

Most wild plant varieties are usually well-adapted to resist these stress factors. However, monoculture crops have lost this ability to a large extent.

The European researchers extracted these self-protection chemicals from wild plants, and made them available to the UFS for research and development.

“This important survival mechanism became dormant in monoculture crops. ComCat® wakes the plant up and says ‘Hey, you should start protecting yourself’.”

Research over the last few years has shown that the agent, applied mostly as a foliar spray, subsequently leads to better seedlings, as well as to growth, and yields enhancement of various crops. This is good news for the agricultural sector as it does not induce unwanted early vegetative growth that could jeopardise the final yield ? as happened in the past for nitrogen application at an early growth stage.

“The use of synthetic agents, such as fungicides which contain copper, are now banned. Nowadays, options for natural and organic agriculture is being investigated. This product is already widely used in Europe, but because farmers are often swamped by quacks, the South African market is still somewhat sceptical.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept