Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 January 2023 | Story Leonie Bolleurs | Photo Leonie Bolleurs
At the 31st Annual Conference of SAARMSTE, were from the left: Prof Loyiso Jita, Dean of the UFS Faculty of Education; Prof Dr Susanne Prediger, plenary speaker, Prof Francis Petersen, UFS Rector and Vice-Chancellor; Dr Maria Tsakeni, Head of the UFS Department of Mathematics, Natural Science and Technology Education and Conference Chair; Dr Tulsi Morar, SAARMSTE President; and Prof Mogege Mosimege, Research Chair in Mathematics Education and Director of Initial Teacher Education at the UFS.

The University of the Free State (UFS) hosted the 31st Annual Conference of the Southern African Association for Research in Mathematics, Science and Technology Education (SAARMSTE) on its Bloemfontein Campus from 17 to 19 January 2023.

After two years of hosting the SAARMSTE conference virtually, it was presented as a hybrid conference for the first time. In attendance were delegates from the continent, the USA, India, Australia, and Europe.

The conference theme was: Intersecting Research, Policy and Practice for a Sustainable Praxis in Mathematics, Science and Technology Education: New possibilities and directions for the post-COVID-19 Pandemic Era.

 

Sharing best practices and discussing common challenges

SAARMSTE President, Dr Tulsi Morar from the Nelson Mandela University, believes that the conference provided fertile ground for delegates to share best practices, to discuss common challenges experienced during the pandemic, and to celebrate how these challenges were overcome. "It is only through our reliance and strength that we have succeeded, and because of our experiences, we can grow and innovate to be better prepared for any further challenges," he said.

Opening the event was Prof Francis Petersen, Rector and Vice-Chancellor of the UFS. He said the conference provided meaningful discussions for the challenges the world has to solve, stating that with challenges also come possibilities.

“We live in a time of significant change in the realm of technology, which has an impact on the world of work. Graduates will need to change their thinking in the world of work. They need to understand the future world of work,” Prof Petersen stated.

He also touched on curriculum reform, saying that a critical challenge for South Africa's education system is the decolonisation of the curriculum. What is being taught must make meaningful sense in our context. “The UFS has made significant progress in curriculum transformation since 2016,” he added.

With delegates as well as speakers from other countries present at the conference, Prof Petersen also talked about the UFS’ Global Citizens initiative. He said no country can operate in isolation. We need to learn from each other to move forward as a collective. “It is also vital to deliver global citizens,” he said.

“The importance of the SAARMSTE conference cannot be overemphasised in our current education landscape. We need sustainable relationships to be developed at conferences such as these in order to ask questions, think differently, and renew ourselves,” he concluded, stating that the role of humanities and social sciences in society is critical and that SAARMSTE can add value in this context.

 

Thinking indigenously about Technology education and its implementation

Contributing to robust discussions on Science, Technology, Engineering and Mathematics education, three keynote speakers shared their views during the three-day conference.

Prof Dr Susanne Prediger, Director of the newly established DZLM, the German National Centre for Mathematics Teacher Education, delivered the first keynote address of the conference. She talked about Fostering students’ understanding of procedures and underlying basic concepts: Design research for mathematics classrooms and teacher professional development in the post-pandemic era.

She said that although providing students with rich and deep mathematical learning opportunities is a common request in Mathematics education, many students are still only exposed to superficial learning. According to her, this was aggravated by the school closures during the pandemic and will continue in the post-pandemic era if Mathematics teachers are not sufficiently supported and prepared.

The second plenary was delivered by Prof Mishack T Gumbo from the University of South Africa. He is a Research Professor of Indigenous Technology Knowledge Systems Education in the Department of Science and Technology Education. The title of his talk was: A relook into Technology Education: Raising a transformational issue, where he focused on education, specifically the curriculum of Technology Education as a school subject.

The third plenary was delivered by Dr Gillian Roehrig from the University of Minnesota in the United States. Dr Roehrig is known for her research that explores issues of professional development for K-12 Science teachers, with a focus on the implementation of integrated STEM learning environments and the induction and mentoring of beginning secondary Science teachers.

Her paper, titled The Hows and Whys of Integrated STEM Education, explored the development of a conceptual and curricular framework for integrated STEM, and the benefits of using interdisciplinary approaches to address the policy goals of preparing students as STEM-literate citizens and for the future STEM workforce.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept