Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 January 2023 | Story Edzani Nephalela | Photo Henco Myburg
Thembeni Nxangisa
Free State MEC for Agriculture and Rural Development, Thembeni Nxangisa, representing Minister Barbara Creecy during the Fifth Global Change Conference at the University of the Free State

From 30 January to 2 February 2023, the University of the Free State is hosting researchers, members of industry and government, businesspeople, funders, and foreign diplomatic missions for the fifth National Global Change Conference.

The purpose of the conference is to share and debate current local research and development initiatives that form part of the Global Change Grand Challenge (GCC5), one of the focus areas developed under the Department of Science and Innovation's Ten-Year Innovation Plan.  

The GCC5 supports knowledge generation and technological innovation to enable South Africa, Africa, and the world to respond to global environmental change, including climate change, in an informed and innovative way.

The four-day event is taking place on the Bloemfontein Campus of the UFS under the theme: ‘Research and innovation accelerating transformations to global sustainability’. It is jointly organised by the Department of Science and Innovation, the National Research Foundation, the South African Global Change Science Committee, and the UFS.  

Topics on the conference agenda include the state of the southern oceans; the role of physics in power grids; climate and health, water resources, and global crises; and agriculture in a changing environment, among other topics.  

For more information on GCC5, kindly click here.

Follow the discussion on UFS social media platforms.

 



News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept