Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2023 | Story Charlene Stanley | Photo Supplied
Vuyelwa Vumendlini
Vuyelwa Vumendlini, Alternate Executive Director at the International Monetary Fund in Washington DC.

High-profile positions at National Treasury, the World Bank and now also the International Monetary Fund in Washington, mark an illustrious career for UFS Economics alumna, Vuyelwa Vumendlini.

“Go in full force, hands and feet, and accept this opportunity of a lifetime. You won’t regret it.” These words of Dr Minette Smit, her thesis supervisor, proved to be pivotal advice to a young Vuyelwa Vumendlini. At the time, she was doing her BCom Honours in Economics (1996-1999) and was presented with a scholarship opportunity to complete her master’s degree in the USA.

“I was afraid to leave my home and my comfort zone,” she explains. “But looking back, I’m extremely grateful to have taken that step.”

Her studies culminated in an appointment as Senior Adviser to the Executive Director at the World Bank, then Deputy Director-General: International and Regional Economic Policy at the National Treasury, and now as Alternate Executive Director at the International Monetary Fund (IMF) in Washington DC. As an IMF executive board member, Vumendlini represents 23 English-speaking African countries that are members of a constituency. The Executive Board of the IMF has 24 chairs, representing 24 constituencies from its 189 countries’ membership. Among her duties are considering policy issues and surveillance reports, as well as approving and monitoring IMF programmes involving lending and/or technical assistance.

Since this is the second stint in Washington for her and her children, Simphiwe, Enhle, and Anele, settling down was much easier. “Because of the COVID-19 isolation, we were kind of used to being alone at home, so we didn’t find the solitude that bad while we were still making new friends.”

She misses South African food the most – things like biltong and boerewors – and the proximity of favourite restaurants like Ocean Basket and Mugg & Bean. She has fond memories of her study years, working as an assistant in the Department of Economics, hanging out at Mooimeisiesfontein on Saturdays, and building rag floats for Vergeet-My-Nie and Kestell residences. Plans for the future include tackling her PhD in Economics.

Her advice to UFS students: “Be up to date with what is happening around you. Do not be afraid to do things differently. Be agile in your approach to achieving your career aspirations and be ready to take on those opportunities when they present themselves.”

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept