Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2023 | Story Charlene Stanley | Photo Supplied
Vuyelwa Vumendlini
Vuyelwa Vumendlini, Alternate Executive Director at the International Monetary Fund in Washington DC.

High-profile positions at National Treasury, the World Bank and now also the International Monetary Fund in Washington, mark an illustrious career for UFS Economics alumna, Vuyelwa Vumendlini.

“Go in full force, hands and feet, and accept this opportunity of a lifetime. You won’t regret it.” These words of Dr Minette Smit, her thesis supervisor, proved to be pivotal advice to a young Vuyelwa Vumendlini. At the time, she was doing her BCom Honours in Economics (1996-1999) and was presented with a scholarship opportunity to complete her master’s degree in the USA.

“I was afraid to leave my home and my comfort zone,” she explains. “But looking back, I’m extremely grateful to have taken that step.”

Her studies culminated in an appointment as Senior Adviser to the Executive Director at the World Bank, then Deputy Director-General: International and Regional Economic Policy at the National Treasury, and now as Alternate Executive Director at the International Monetary Fund (IMF) in Washington DC. As an IMF executive board member, Vumendlini represents 23 English-speaking African countries that are members of a constituency. The Executive Board of the IMF has 24 chairs, representing 24 constituencies from its 189 countries’ membership. Among her duties are considering policy issues and surveillance reports, as well as approving and monitoring IMF programmes involving lending and/or technical assistance.

Since this is the second stint in Washington for her and her children, Simphiwe, Enhle, and Anele, settling down was much easier. “Because of the COVID-19 isolation, we were kind of used to being alone at home, so we didn’t find the solitude that bad while we were still making new friends.”

She misses South African food the most – things like biltong and boerewors – and the proximity of favourite restaurants like Ocean Basket and Mugg & Bean. She has fond memories of her study years, working as an assistant in the Department of Economics, hanging out at Mooimeisiesfontein on Saturdays, and building rag floats for Vergeet-My-Nie and Kestell residences. Plans for the future include tackling her PhD in Economics.

Her advice to UFS students: “Be up to date with what is happening around you. Do not be afraid to do things differently. Be agile in your approach to achieving your career aspirations and be ready to take on those opportunities when they present themselves.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept