Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2023 | Story Charlene Stanley | Photo Supplied
Vuyelwa Vumendlini
Vuyelwa Vumendlini, Alternate Executive Director at the International Monetary Fund in Washington DC.

High-profile positions at National Treasury, the World Bank and now also the International Monetary Fund in Washington, mark an illustrious career for UFS Economics alumna, Vuyelwa Vumendlini.

“Go in full force, hands and feet, and accept this opportunity of a lifetime. You won’t regret it.” These words of Dr Minette Smit, her thesis supervisor, proved to be pivotal advice to a young Vuyelwa Vumendlini. At the time, she was doing her BCom Honours in Economics (1996-1999) and was presented with a scholarship opportunity to complete her master’s degree in the USA.

“I was afraid to leave my home and my comfort zone,” she explains. “But looking back, I’m extremely grateful to have taken that step.”

Her studies culminated in an appointment as Senior Adviser to the Executive Director at the World Bank, then Deputy Director-General: International and Regional Economic Policy at the National Treasury, and now as Alternate Executive Director at the International Monetary Fund (IMF) in Washington DC. As an IMF executive board member, Vumendlini represents 23 English-speaking African countries that are members of a constituency. The Executive Board of the IMF has 24 chairs, representing 24 constituencies from its 189 countries’ membership. Among her duties are considering policy issues and surveillance reports, as well as approving and monitoring IMF programmes involving lending and/or technical assistance.

Since this is the second stint in Washington for her and her children, Simphiwe, Enhle, and Anele, settling down was much easier. “Because of the COVID-19 isolation, we were kind of used to being alone at home, so we didn’t find the solitude that bad while we were still making new friends.”

She misses South African food the most – things like biltong and boerewors – and the proximity of favourite restaurants like Ocean Basket and Mugg & Bean. She has fond memories of her study years, working as an assistant in the Department of Economics, hanging out at Mooimeisiesfontein on Saturdays, and building rag floats for Vergeet-My-Nie and Kestell residences. Plans for the future include tackling her PhD in Economics.

Her advice to UFS students: “Be up to date with what is happening around you. Do not be afraid to do things differently. Be agile in your approach to achieving your career aspirations and be ready to take on those opportunities when they present themselves.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept