Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 July 2023 | Story André Damons | Photo Supplied
Tyla Baker
Tyla Baker, a postgraduate student in the Department of Microbiology and Biochemistry at the University of the Free State (UFS).

Yeast and other filamentous fungi, which pose a great risk to the health of immune-compromised or suppressed individuals, can be found in various drinking water sources such as ground, spring, surface, and tap water. These opportunistic pathogens may cause severe to fatal infections and can range from superficial to bloodstream or systemic infections.

This is according to Tyla Baker, a postgraduate student in the Department of Microbiology and Biochemistry at the University of the Free State (UFS). She is studying for her MSc degree in Microbiology under the supervision Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts. Prof Jacobus Albertyn and Dr Jolly Musoke are her co-supervisors.

Baker says the fungi in the water highlights that current water treatment processes are not efficient in their removal from water destined for household use. “These infections may not be harmful to people with healthy immune systems, but do pose a great risk to the health of immune-compromised or suppressed individuals. 

Definite possibility to contract fungal infections from polluted water 

“As the number of people with immune systems that are less functional (e.g. premature babies, elderly persons, people with cancer, diabetes or other serious diseases, HIV+ persons, transplant patients) increases, the number of people at risk of fungal infection also increases,” says Baker.

According to Baker, a previous study done in Brazil has identified yeast in bottled mineral water as well as municipally supplied tap water. The potential risk to contract fungal infections from polluted water sources is a definite possibility but more research is required to fully understand and determine the level of risk and the extent of its effects, she says. In the context of Mangaung, it is a concern that untreated water from sewage works as well as other sewage often leaks into the environment (as evidenced by numerous recent articles in local newspapers). These waters are potential carriers of large numbers of pathogens (including pathogenic yeasts/fungi) that may increase the risk to people coming into contact with it.

Baker says there is a good chance people are consuming these kinds of micro-organisms daily, considering that yeast and other filamentous fungi can also form biofilms inside pipes and spread as the impact of water flow dislodges these cells. “People will not even be aware that they are consuming these micro-organisms, some fungi are considered nuisance microbes and may cause a change in the smell and taste of water which may act as an indicator that the water is contaminated, but tests would be needed to confirm this,” she says.

The effects of consuming these fungi are still a grey area of research since the full extent of the consumption of yeast is still unknown, but there are studies being conducted to elucidate the full impact of this occurrence, says Baker. The risk depends on the immune status of the person, the specific species of yeast/fungus ingested, and the number of cells/spores ingested.

Culture-dependent and independent methods

 “It is important to know that many pathogenic yeasts and other fungi are opportunistic pathogens, meaning they infect individuals whose immune systems are compromised due to various reasons such as illness (HIV/AIDS, cancer, TB etc.), undergoing organ transplants or even something as simple as using antimicrobial agents such as antibiotics. 

“Taking this into account, along with the HIV/AIDS statistics in South Africa, which has a prevalence rate of 13,7% with approximately 8,2 million people in 2021 living with HIV, these individuals are more susceptible to infection by these opportunistic pathogens. Some of these pathogenic yeasts are also multidrug resistant or show resistance to readily available antifungals, such as fluconazole, which hinders the ability of healthcare professionals to efficiently treat infections to avoid fatal/severe outcomes,” explains Baker.  

For her studies, she will be testing for fungi in water by using a combination of culture-dependent and independent methods to try and identify yeast present in wastewater. Baker says culture-dependent techniques will include culturing (growing) yeast on an appropriate medium while culture-independent techniques will include more intricate molecular work in the form of a multiplex PCR (polymerase chain reaction) which will enable her to identify an array of pathogenic yeasts present in samples.

According to Baker, people can stay safe by boiling water before drinking it, although temperatures above 100°C are required to kill most harmful microbes. Regular cleaning of shower heads and faucets help to prevent build-up which may act as a surface to which fungi will attach to and grow. Another way to stay safe is to maintain and regularly inspect water filters for damage and avoid contact with untreated sewage.

News Archive

Kovsie Tennis team defends proud USSA record in Cape Town
2015-12-01


In 2014, Kovsies won gold at the USSA Tennis Tournament for the eighth consecutive time. Six players from last year's 12-man squad are in 2015 in Cape Town again available. Photo: Johan Roux

Duke Munro already has six gold medals from the USSA Tennis Tournament in his cupboard, and the Kovsie Tennis team would wish to bid him farewell in a fitting manner during what will probably be his last tournament in Cape Town.

This year's tournament, taking place from 30 November to 4 December 2015, will probably be Munro's last, since he is completing his Master's degree in Quantity Surveying at the University of the Free State (UFS).

He has competed in the USSA Tournament since 2009, and would like to help his team defend its proud record.

UFS aim for ninth consecutive title

Kovsies have won gold at the USSA Tournament for the last eight years. They are the only team who have been able to win the tournament since the combined format was adopted in 2010. In 2007 and 2008, their Women's team won the tournament, and in 2009, their Men's team.

Kovsies will play in group matches against the Universities of Venda and Wits on 30 November 2015, against the University of Cape Town's (UCT's) second team on 1 December 2015, and against UCT's first team on 2 December 2015. The cross and knockout matches will be played on 3 and 4 December 2015.

Other sporting codes

The Sevens Rugby team from the UFS will compete in the USSA Tournament in George on 30 November and 1 December 2015.

For the past two years, the team has won bronze, and will be playing three league matches on 30 November 2015 against the North-West University's Vaal Campus, Nelson Mandela Metropolitan University's Port Elizabeth Campus, and the Vaal University of Technology.

Kovsies are the current Varsity Sevens Champions after winning the title in Cape Town in April 2015.

Ten Kovsie swimmers took part in the USSA Tournament in Johannesburg from 28 November to 30 November 2015. Last year, Kovsies came third, but unfortunately some of their leading swimmers were unable to take part this year.

The Kovsie Table tennis team will participate in the USSA Tournament in Kimberley from 30 November to 4 December 2015.

Most of the USSA Tournaments in the other sporting codes were either postponed or cancelled because of the recent nationwide student protests. As a result of the protests, exams were written later, and tournaments would have taken place during the holidays.

Only the tennis, table tennis, Sevens rugby, swimming, and cricket B Division in East London will continue.

The USSA Soccer Tournament, to take place at the UFS and the Central University of Technology in Bloemfontein, was postponed until March 2016.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept