Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 July 2023 | Story André Damons | Photo Supplied
Tyla Baker
Tyla Baker, a postgraduate student in the Department of Microbiology and Biochemistry at the University of the Free State (UFS).

Yeast and other filamentous fungi, which pose a great risk to the health of immune-compromised or suppressed individuals, can be found in various drinking water sources such as ground, spring, surface, and tap water. These opportunistic pathogens may cause severe to fatal infections and can range from superficial to bloodstream or systemic infections.

This is according to Tyla Baker, a postgraduate student in the Department of Microbiology and Biochemistry at the University of the Free State (UFS). She is studying for her MSc degree in Microbiology under the supervision Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts. Prof Jacobus Albertyn and Dr Jolly Musoke are her co-supervisors.

Baker says the fungi in the water highlights that current water treatment processes are not efficient in their removal from water destined for household use. “These infections may not be harmful to people with healthy immune systems, but do pose a great risk to the health of immune-compromised or suppressed individuals. 

Definite possibility to contract fungal infections from polluted water 

“As the number of people with immune systems that are less functional (e.g. premature babies, elderly persons, people with cancer, diabetes or other serious diseases, HIV+ persons, transplant patients) increases, the number of people at risk of fungal infection also increases,” says Baker.

According to Baker, a previous study done in Brazil has identified yeast in bottled mineral water as well as municipally supplied tap water. The potential risk to contract fungal infections from polluted water sources is a definite possibility but more research is required to fully understand and determine the level of risk and the extent of its effects, she says. In the context of Mangaung, it is a concern that untreated water from sewage works as well as other sewage often leaks into the environment (as evidenced by numerous recent articles in local newspapers). These waters are potential carriers of large numbers of pathogens (including pathogenic yeasts/fungi) that may increase the risk to people coming into contact with it.

Baker says there is a good chance people are consuming these kinds of micro-organisms daily, considering that yeast and other filamentous fungi can also form biofilms inside pipes and spread as the impact of water flow dislodges these cells. “People will not even be aware that they are consuming these micro-organisms, some fungi are considered nuisance microbes and may cause a change in the smell and taste of water which may act as an indicator that the water is contaminated, but tests would be needed to confirm this,” she says.

The effects of consuming these fungi are still a grey area of research since the full extent of the consumption of yeast is still unknown, but there are studies being conducted to elucidate the full impact of this occurrence, says Baker. The risk depends on the immune status of the person, the specific species of yeast/fungus ingested, and the number of cells/spores ingested.

Culture-dependent and independent methods

 “It is important to know that many pathogenic yeasts and other fungi are opportunistic pathogens, meaning they infect individuals whose immune systems are compromised due to various reasons such as illness (HIV/AIDS, cancer, TB etc.), undergoing organ transplants or even something as simple as using antimicrobial agents such as antibiotics. 

“Taking this into account, along with the HIV/AIDS statistics in South Africa, which has a prevalence rate of 13,7% with approximately 8,2 million people in 2021 living with HIV, these individuals are more susceptible to infection by these opportunistic pathogens. Some of these pathogenic yeasts are also multidrug resistant or show resistance to readily available antifungals, such as fluconazole, which hinders the ability of healthcare professionals to efficiently treat infections to avoid fatal/severe outcomes,” explains Baker.  

For her studies, she will be testing for fungi in water by using a combination of culture-dependent and independent methods to try and identify yeast present in wastewater. Baker says culture-dependent techniques will include culturing (growing) yeast on an appropriate medium while culture-independent techniques will include more intricate molecular work in the form of a multiplex PCR (polymerase chain reaction) which will enable her to identify an array of pathogenic yeasts present in samples.

According to Baker, people can stay safe by boiling water before drinking it, although temperatures above 100°C are required to kill most harmful microbes. Regular cleaning of shower heads and faucets help to prevent build-up which may act as a surface to which fungi will attach to and grow. Another way to stay safe is to maintain and regularly inspect water filters for damage and avoid contact with untreated sewage.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept