Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 July 2023 | Story Prof Theodorus du Plessis | Photo Supplied
Prof Theo du Plessis
Prof Theodorus du Plessis is Professor Emeritus in the Department of South African Sign Language and Deaf Studies at the University of the Free State (UFS).


Opinion article by Prof Theodorus du Plessis, Professor Emeritus in the Department of South African Sign Language and Deaf Studies, University of the Free State


Firstly, South Africa now becomes the first country in the world to recognise its national sign language as an official language in the country's constitution. This is different from the current 76 countries that officially recognise their sign languages.

Secondly, South Africa becomes only the seventh country in the world to recognise its national sign language as an official national language. The other countries where the national sign language is an official language are Uruguay (as of 2001), New Zealand (as of 2006), Poland (as of 2012), Papua New Guinea and South Korea (both as of 2015), and Malta (as of 2016). Four of these countries – New Zealand, Poland, South Korea, and Malta – have effected the officialisation of their national sign languages through a national sign language law. Uruguay has done so through disability legislation and Papua New Guinea through a dictation of the country's National Executive Council.

Thirdly, it took South African Sign Language (SASL) just as long to become an official language of the country, as was the case with South Africa's nine Sintu languages (Zulu, Sotho, etc.). These languages were first recognised as official languages at regional level in 1963 but were recognised as national official languages alongside Afrikaans and English from the interim 1993 Constitution. SASL was granted official status from nowhere within 30 years. Incidentally, Afrikaans gained official status in 1925 – within 17 years after the 1909 Union Act was passed, recognising only English and Dutch as official languages.

Three factors played a role

Achieving these exceptional milestones is due to at least three factors, namely a favourable socio-political climate globally around minority languages and the whole disability issue, sustained pressure from an active Deaf lobby, and the active and decisive bottom-up actions by a string of role players. The degree of political favour should certainly not be lost sight of either. Already in 1995, the ruling ANC wanted SASL to become an official language, and eventually submitted exactly such a proposal to the Constitutional Assembly. Even though the time was not ripe for this, the proposal resulted in SASL being declared an official language in the South African Schools Act of 1996 for the purposes of teaching and learning in public schools (note, not only Deaf schools), the inclusion of "sign language" [sic] in the constitutional language mandate of the Pan South African Language Board, and the granting of linguistic human rights to all South Africans, including the Deaf, in terms of the Bill of Human Rights. The further amplification of SASL in terms of the 18th Constitutional Amendment crowns this campaign, which goes back to the period of the birth of our democracy.

International experts give three reasons why the officialisation of countries' national sign languages is significant:

  • It can help to ensure that Deaf people have access to education, employment, and other services in their ‘own language’.
  • It can promote the use of sign languages in general and also help to preserve the languages.
  • It can raise awareness about the so-called Deaf culture and the contributions of the Deaf.

All three reasons also bring us to the important issue of inclusivity. Education, in particular, plays an important role in this. To date, the Schools Act has been enforced in such a way that SASL has mainly been taught in Deaf schools as home language, while the law stipulates that it applies to all public schools. Now that SASL is also a national official language, perhaps the opportunity has come for the inclusion of SASL as home language in all schools. More importantly, a curriculum must now be developed so that the language can also be taught as first and second additional language in all schools. Such a thing would give inclusivity an enormous jolt. Many universities have been offering SASL as a subject for some time and can attest to the exceptional contribution it makes to fellowship between hearing and deaf persons.

Will not promote inclusivity as such

Also of great importance is the establishment of a functional language dispensation that will include professional language services for the Deaf as well. This will assist in actively realising the significant provisions of the Use of Official Languages Act of 2012 that state entities must establish communication for persons with SASL as preferred language.

It is important to understand that the mere inclusion of SASL as a 12th official language will not promote inclusivity as such. It will require hard work. And more hard work!

 


Bibliography

Wikipedia. 2023. List of official languages by country and territory.  https://en.wikipedia.org/wiki/List_of_official_languages_by_country_and_territory was verified by the author.

Branson, J en D Miller. 1997. National sign language and language policies. In Wodak en  Corson, Encyclopedia of language and education: language policy and political issues in education, 1:89–98). Dordrecht: Kluwer Academic Publishers.

Constitute. 2013. Zimbabwe 2013 (2017 hersien). https://www.constituteproject.org/constitution/Zimbabwe_2017.

De Meulder, M. 2015. The legal recognition of sign languages. Sign Language Studies, 15(4):498–506.

De Meulder, Maartje, J Murray en RL McKee. 2019. Introduction. The legal recognition of sign languages: advocacy and outcomes around the world. In De Meulder,  Murray en McKee (2019), The legal recognition of sign languages: advocay and outcomes around the world. Bristol: Multilingual Matters.

Kiprop, V. 2019. Which countries recognize sign language as an official language? World Atlas: https://www.worldatlas.com/articles/which-countries-recognize-sign-language-as-an-official-language.html

Parlementêre Redaksie. 1995. Gebaretaal dalk gou SA se 12de amptelike taal. Die Burger, 8 Mei, bl. 9.

Reagan, T. 2020. Linguistic human rights and the deaf: implications for language policy. Hooftoesprak, 2nd Language Diversity in Educational Settings Workshop 2020: "Making a change through sign language". Organised by the Department of South African Sign Language and Deaf Studies, University of the Free State, 9–20 November 2020. Virtual event.

Timmermans, N. 2005. The status of sign languages in Europe. Strasbourg: Council of Europe Publishing.

VN (Verenigde Nasies). 1975. Declaration on the Rights of Disabled Persons adopted 9 December 1975 by General Assembly resolution 3447 (XXX). United Nations Human Rights Office of the High Commisioner. https://www.ohchr.org/en/instruments-mechanisms/instruments/declaration-rights-disabled-persons

—. 2006. Convention on the Rights of Persons with Disabilities adopted 13 December 2006 by Sixty-first session of the General Assembly by resolution A/RES/51/106. United Nations Human Rights Office of the High Commissioner. https://www.ohchr.org/en/instruments-mechanisms/instruments/convention-rights-persons-disabilities

—. 2017. International Day of Sign Languages, Resolution adopted by the General Assembly on 19 December 2017 A/RES/72/161. United Nations General Assembly.  https://undocs.org/Home/Mobile?FinalSymbol=A%2FRES%2F72%2F161&Language=E&DeviceType=Desktop&LangRequested=False

WFD (Wêreld Federasie van Dowes). 2016. Our story. World Federation of the Deaf. http://wfdeaf.org/who-we-are/our-story

—. 2022. The legal recognition of national sign languages (Update: 10 January 2022). World Federation of the Deaf. https://wfdeaf.org/news/the-legal-recognition-of-national-sign-languages

Wikipedia. 2023. List of official languages by country and territory.  https://en.wikipedia.org/wiki/List_of_official_languages_by_country_and_territory (Verified by author).


 

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept