Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 July 2023 | Story Prof Theodorus du Plessis | Photo Supplied
Prof Theo du Plessis
Prof Theodorus du Plessis is Professor Emeritus in the Department of South African Sign Language and Deaf Studies at the University of the Free State (UFS).


Opinion article by Prof Theodorus du Plessis, Professor Emeritus in the Department of South African Sign Language and Deaf Studies, University of the Free State


Firstly, South Africa now becomes the first country in the world to recognise its national sign language as an official language in the country's constitution. This is different from the current 76 countries that officially recognise their sign languages.

Secondly, South Africa becomes only the seventh country in the world to recognise its national sign language as an official national language. The other countries where the national sign language is an official language are Uruguay (as of 2001), New Zealand (as of 2006), Poland (as of 2012), Papua New Guinea and South Korea (both as of 2015), and Malta (as of 2016). Four of these countries – New Zealand, Poland, South Korea, and Malta – have effected the officialisation of their national sign languages through a national sign language law. Uruguay has done so through disability legislation and Papua New Guinea through a dictation of the country's National Executive Council.

Thirdly, it took South African Sign Language (SASL) just as long to become an official language of the country, as was the case with South Africa's nine Sintu languages (Zulu, Sotho, etc.). These languages were first recognised as official languages at regional level in 1963 but were recognised as national official languages alongside Afrikaans and English from the interim 1993 Constitution. SASL was granted official status from nowhere within 30 years. Incidentally, Afrikaans gained official status in 1925 – within 17 years after the 1909 Union Act was passed, recognising only English and Dutch as official languages.

Three factors played a role

Achieving these exceptional milestones is due to at least three factors, namely a favourable socio-political climate globally around minority languages and the whole disability issue, sustained pressure from an active Deaf lobby, and the active and decisive bottom-up actions by a string of role players. The degree of political favour should certainly not be lost sight of either. Already in 1995, the ruling ANC wanted SASL to become an official language, and eventually submitted exactly such a proposal to the Constitutional Assembly. Even though the time was not ripe for this, the proposal resulted in SASL being declared an official language in the South African Schools Act of 1996 for the purposes of teaching and learning in public schools (note, not only Deaf schools), the inclusion of "sign language" [sic] in the constitutional language mandate of the Pan South African Language Board, and the granting of linguistic human rights to all South Africans, including the Deaf, in terms of the Bill of Human Rights. The further amplification of SASL in terms of the 18th Constitutional Amendment crowns this campaign, which goes back to the period of the birth of our democracy.

International experts give three reasons why the officialisation of countries' national sign languages is significant:

  • It can help to ensure that Deaf people have access to education, employment, and other services in their ‘own language’.
  • It can promote the use of sign languages in general and also help to preserve the languages.
  • It can raise awareness about the so-called Deaf culture and the contributions of the Deaf.

All three reasons also bring us to the important issue of inclusivity. Education, in particular, plays an important role in this. To date, the Schools Act has been enforced in such a way that SASL has mainly been taught in Deaf schools as home language, while the law stipulates that it applies to all public schools. Now that SASL is also a national official language, perhaps the opportunity has come for the inclusion of SASL as home language in all schools. More importantly, a curriculum must now be developed so that the language can also be taught as first and second additional language in all schools. Such a thing would give inclusivity an enormous jolt. Many universities have been offering SASL as a subject for some time and can attest to the exceptional contribution it makes to fellowship between hearing and deaf persons.

Will not promote inclusivity as such

Also of great importance is the establishment of a functional language dispensation that will include professional language services for the Deaf as well. This will assist in actively realising the significant provisions of the Use of Official Languages Act of 2012 that state entities must establish communication for persons with SASL as preferred language.

It is important to understand that the mere inclusion of SASL as a 12th official language will not promote inclusivity as such. It will require hard work. And more hard work!

 


Bibliography

Wikipedia. 2023. List of official languages by country and territory.  https://en.wikipedia.org/wiki/List_of_official_languages_by_country_and_territory was verified by the author.

Branson, J en D Miller. 1997. National sign language and language policies. In Wodak en  Corson, Encyclopedia of language and education: language policy and political issues in education, 1:89–98). Dordrecht: Kluwer Academic Publishers.

Constitute. 2013. Zimbabwe 2013 (2017 hersien). https://www.constituteproject.org/constitution/Zimbabwe_2017.

De Meulder, M. 2015. The legal recognition of sign languages. Sign Language Studies, 15(4):498–506.

De Meulder, Maartje, J Murray en RL McKee. 2019. Introduction. The legal recognition of sign languages: advocacy and outcomes around the world. In De Meulder,  Murray en McKee (2019), The legal recognition of sign languages: advocay and outcomes around the world. Bristol: Multilingual Matters.

Kiprop, V. 2019. Which countries recognize sign language as an official language? World Atlas: https://www.worldatlas.com/articles/which-countries-recognize-sign-language-as-an-official-language.html

Parlementêre Redaksie. 1995. Gebaretaal dalk gou SA se 12de amptelike taal. Die Burger, 8 Mei, bl. 9.

Reagan, T. 2020. Linguistic human rights and the deaf: implications for language policy. Hooftoesprak, 2nd Language Diversity in Educational Settings Workshop 2020: "Making a change through sign language". Organised by the Department of South African Sign Language and Deaf Studies, University of the Free State, 9–20 November 2020. Virtual event.

Timmermans, N. 2005. The status of sign languages in Europe. Strasbourg: Council of Europe Publishing.

VN (Verenigde Nasies). 1975. Declaration on the Rights of Disabled Persons adopted 9 December 1975 by General Assembly resolution 3447 (XXX). United Nations Human Rights Office of the High Commisioner. https://www.ohchr.org/en/instruments-mechanisms/instruments/declaration-rights-disabled-persons

—. 2006. Convention on the Rights of Persons with Disabilities adopted 13 December 2006 by Sixty-first session of the General Assembly by resolution A/RES/51/106. United Nations Human Rights Office of the High Commissioner. https://www.ohchr.org/en/instruments-mechanisms/instruments/convention-rights-persons-disabilities

—. 2017. International Day of Sign Languages, Resolution adopted by the General Assembly on 19 December 2017 A/RES/72/161. United Nations General Assembly.  https://undocs.org/Home/Mobile?FinalSymbol=A%2FRES%2F72%2F161&Language=E&DeviceType=Desktop&LangRequested=False

WFD (Wêreld Federasie van Dowes). 2016. Our story. World Federation of the Deaf. http://wfdeaf.org/who-we-are/our-story

—. 2022. The legal recognition of national sign languages (Update: 10 January 2022). World Federation of the Deaf. https://wfdeaf.org/news/the-legal-recognition-of-national-sign-languages

Wikipedia. 2023. List of official languages by country and territory.  https://en.wikipedia.org/wiki/List_of_official_languages_by_country_and_territory (Verified by author).


 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept