Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2023 | Story Leonie Bolleurs | Photo Supplied
iKudu Coil Chevon Slammbee
Chevon Slambee says the COIL approach connects students and educators from different cultural backgrounds through online platforms, allowing participants to engage in cross-cultural learning and collaboration.

Internationalisation of the curriculum has been mandatory for institutions of higher education since 2020, according to the National Policy Framework for the Internationalisation of Higher Education in South Africa.

The iKudu project, an Erasmus+Capacity-Building in Higher Education (CBHE) co-funded project, which aims, among others, for universities to include internationalisation and decolonisation dimensions to transform their curricula, recently published the document: Considerations for enabling guidelines, strategies, and policies for internationalised curriculum renewal for universities with a focus on the diverse South African contexts. 

The University of the Free State (UFS) Office for International Affairs (OIA) played a key role in the publication of this document.

In his editorial of the document, Dr Cornelius Hagenmeier, Director of the OIA, states that in the spirit of the iKudu values – which include Ubuntu, trust, and equality – the project stakeholders have developed a document that will serve as a repository of ideas from which all consortium member universities can intelligently borrow when developing their institutional guidelines, strategies, and policies for curriculum renewal, Collaborative Online International Learning (COIL), or other forms of virtual exchange.

He says they are publishing this document to make the ideas available to the broader higher education community, in the hope that they will contribute to further debate on internationalised curriculum renewal processes.

The iKudu project is one of the few major EU-funded capacity-building projects coordinated by a South African university.

UFS coordinates iKudu

According to Chevon Slambee, iKudu Project Manager in the UFS OIA, the consideration document serves as a guiding document for all universities, but specifically focuses on South African universities, taking into account the unique and diverse contexts of South Africa’s higher education landscape and how these contexts influence the curriculum renewal processes.

Slambee explains that the COIL approach connects students and educators from different cultural backgrounds through online platforms, allowing participants to engage in cross-cultural learning and collaboration within the existing curriculum. 

Through joint projects, shared courses, and virtual exchanges, it aims to foster intercultural competence, global awareness, and mutual understanding among students. Moreover, the initiative creates inclusive opportunities for all students who take part in COIL, as the inequalities due to financial resources are factored out. “It expands the classroom beyond classroom borders, and grants students the opportunity to engage in a digital international world,” says Slambee. 

The five participating South African universities – the UFS, Durban University of Technology, University of Limpopo, University of Venda, and the Central University of Technology – together with the five European universities – the University of Siena (Italy), Coventry University (England), The Hague University of Applied Sciences (The Netherlands), Amsterdam University of Applied Sciences (The Netherlands), and the University of Antwerp (Belgium) – have implemented 51 of their target of 55 COIL programmes, with almost 10 months remaining in the project. “For us, this is a milestone in the iKudu journey,” says Slambee. 

Sharing COIL experiences

One of the UFS lecturers who completed a COIL project is Prof Mariette Reyneke, Associate Professor in the UFS Department of Public Law.

Prof Reyneke recently completed her second COIL experience, this time with Prof Alessandra Viviani from the University of Siena. She says one of the best aspects of this initiative is giving our students the opportunity to broaden their horizons by exposing them to peers from a different country and culture. “Moreover, one also gets to expose students from developed countries to the realities and challenges of a developing country,” she adds.

“Through this initiative, we also get the chance to teach South African students that they have valuable contributions to offer the world. In some instances, our legal solutions to problems are fascinating and enriching for international students. Our theory and implementation of human rights are also sometimes more liberal than what students from Europe experience in their own countries,” says Prof Reyneke, who believes that COIL fosters an innovative and enriching experience for students, while also enhancing academic networks.

“It was very satisfying for me to realise that the students not only enjoyed the experience, but also found it beneficial for their personal growth,” she remarks.

Moving forward, Slambee says the OIA is working closely with the Centre for Teaching and Learning and is in the process of establishing a COIL/virtual engagement hub for the university. Furthermore, the Curriculum Internationalisation Project (CIP) has been approved and is being piloted in specific departments and faculties. For more information about the CIP, contact Prof Lynette Jacobs, Slambee, or Nooreen Adam from the OIA.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept