Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2023 | Story Leonie Bolleurs | Photo Supplied
iKudu Coil Chevon Slammbee
Chevon Slambee says the COIL approach connects students and educators from different cultural backgrounds through online platforms, allowing participants to engage in cross-cultural learning and collaboration.

Internationalisation of the curriculum has been mandatory for institutions of higher education since 2020, according to the National Policy Framework for the Internationalisation of Higher Education in South Africa.

The iKudu project, an Erasmus+Capacity-Building in Higher Education (CBHE) co-funded project, which aims, among others, for universities to include internationalisation and decolonisation dimensions to transform their curricula, recently published the document: Considerations for enabling guidelines, strategies, and policies for internationalised curriculum renewal for universities with a focus on the diverse South African contexts. 

The University of the Free State (UFS) Office for International Affairs (OIA) played a key role in the publication of this document.

In his editorial of the document, Dr Cornelius Hagenmeier, Director of the OIA, states that in the spirit of the iKudu values – which include Ubuntu, trust, and equality – the project stakeholders have developed a document that will serve as a repository of ideas from which all consortium member universities can intelligently borrow when developing their institutional guidelines, strategies, and policies for curriculum renewal, Collaborative Online International Learning (COIL), or other forms of virtual exchange.

He says they are publishing this document to make the ideas available to the broader higher education community, in the hope that they will contribute to further debate on internationalised curriculum renewal processes.

The iKudu project is one of the few major EU-funded capacity-building projects coordinated by a South African university.

UFS coordinates iKudu

According to Chevon Slambee, iKudu Project Manager in the UFS OIA, the consideration document serves as a guiding document for all universities, but specifically focuses on South African universities, taking into account the unique and diverse contexts of South Africa’s higher education landscape and how these contexts influence the curriculum renewal processes.

Slambee explains that the COIL approach connects students and educators from different cultural backgrounds through online platforms, allowing participants to engage in cross-cultural learning and collaboration within the existing curriculum. 

Through joint projects, shared courses, and virtual exchanges, it aims to foster intercultural competence, global awareness, and mutual understanding among students. Moreover, the initiative creates inclusive opportunities for all students who take part in COIL, as the inequalities due to financial resources are factored out. “It expands the classroom beyond classroom borders, and grants students the opportunity to engage in a digital international world,” says Slambee. 

The five participating South African universities – the UFS, Durban University of Technology, University of Limpopo, University of Venda, and the Central University of Technology – together with the five European universities – the University of Siena (Italy), Coventry University (England), The Hague University of Applied Sciences (The Netherlands), Amsterdam University of Applied Sciences (The Netherlands), and the University of Antwerp (Belgium) – have implemented 51 of their target of 55 COIL programmes, with almost 10 months remaining in the project. “For us, this is a milestone in the iKudu journey,” says Slambee. 

Sharing COIL experiences

One of the UFS lecturers who completed a COIL project is Prof Mariette Reyneke, Associate Professor in the UFS Department of Public Law.

Prof Reyneke recently completed her second COIL experience, this time with Prof Alessandra Viviani from the University of Siena. She says one of the best aspects of this initiative is giving our students the opportunity to broaden their horizons by exposing them to peers from a different country and culture. “Moreover, one also gets to expose students from developed countries to the realities and challenges of a developing country,” she adds.

“Through this initiative, we also get the chance to teach South African students that they have valuable contributions to offer the world. In some instances, our legal solutions to problems are fascinating and enriching for international students. Our theory and implementation of human rights are also sometimes more liberal than what students from Europe experience in their own countries,” says Prof Reyneke, who believes that COIL fosters an innovative and enriching experience for students, while also enhancing academic networks.

“It was very satisfying for me to realise that the students not only enjoyed the experience, but also found it beneficial for their personal growth,” she remarks.

Moving forward, Slambee says the OIA is working closely with the Centre for Teaching and Learning and is in the process of establishing a COIL/virtual engagement hub for the university. Furthermore, the Curriculum Internationalisation Project (CIP) has been approved and is being piloted in specific departments and faculties. For more information about the CIP, contact Prof Lynette Jacobs, Slambee, or Nooreen Adam from the OIA.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept